B=x+1/|x+2| với x là số nguyên
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

\(a,x^3+8=x^2-4\)

\(x^3+12-x^2=0\)

\(\left(x+2\right)\left(x^2-3x+6\right)=0\)

\(x=2;x^2-3x=6\)

              \(x\left(x-3\right)=6\)

               \(x=6;9\)

ko bt cách lm chỉ bt thử nghiệm thui == 

Bài 2 Với giá trị nào của m thì phương trình :

 (m+5).x-2m.(x-1)=4  

Gỉa sử m=1

\(\Rightarrow\left(1+5\right)x-2\left(1-1\right)=4\)

\(\Rightarrow6x-0=4\)

\(\Rightarrow6x=4\)

 \(\Rightarrow x=\frac{2}{3}\)( tm )

từ từ đổi may lm nốt :v 

mệt rời o 

thông cảm 

hihi

Bài 7 

\(a,A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

\(b,B=x^2-x+1\)

\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=t\)

\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(\left(x^2+5x\right)^2-36\ge36\forall x\)

\(d,D=x^2+5y^2-2xy+4y-3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

3 tháng 1 2020

có ai ko 

giúp mình với

3 tháng 1 2020

Để a xác định thì :\(x^2-2x\)khác 0

Nên \(x\left(x-2\right)\)khác 0

\(\Rightarrow x\)khacs0 và x khác 2

\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)

Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z

Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)

Để A thuộc Z thì \(x\varepsilon\)Ư(2)

Mà Ư(2) là 2 và -2

Vậy x=2 và x=-2 thì A thuộc Z

Chúc bạn học tốt nhé!

Ta có x + y= 3 => x= 3 - y

=> (3 - y)^2 + y^2 \(\ge\)5

Giải bất phương trình trên, ta được: y \(\ge\)2

Chỉ biết giải đến đó, min P= 33 thì phải

                                        

28 tháng 2 2019

cảm ơn bn , tôi nghĩ ra rồi

bn ra dc \(y\ge2\)thì thay vào \(x^2+y^2\ge5\) ra dc \(x\ge1\)

khi đó min P = 1+16+6.4.1=41 khi và chỉ khi x=1 và y=2

tks bn