K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình như bạn cho đề sai

18 tháng 10 2016

đúng đè mà!

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

22 tháng 2 2019

Giả theo cách lớp 7 nha:

Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=8\)

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2ab\le a^2+b^2\)

\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)

\(\Leftrightarrow a+b\le4\)

Dấu = xảy ra khi \(a=b=2\)

\(\Leftrightarrow x=2\)

30 tháng 8 2020

\(ĐKXĐ:-2\le x\le6\)

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :

\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)

Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)

Vậy \(y_{min}=4\) khi \(x=2\)

21 tháng 7 2020

\(A=2-4\sqrt{x-3}\)

Điều kiện để A xác định: \(x\ge3\)

Vì \(\sqrt{x-3}\ge0\)\(\Rightarrow4\sqrt{x-3}\ge0\)

\(\Rightarrow2-4\sqrt{x-3}\le2\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)( thỏa mãn )

Vậy \(maxA=2\)\(\Leftrightarrow x=3\)