Tìm giá trị lớn nhất của biểu thức A = x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

Áp dụng bđt ( a + b )2 \(\ge\)4ab

16 = ( 2x + xy ) 2 \(\ge\)4 . 2x . xy \(\Leftrightarrow\)8x2y\(\le\)16 \(\Leftrightarrow\)x2\(\le\)2

A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2

Đáp án

x = 1

y = 2 nha

Bài làm

2x + xy = 4

xy= 4 - 2x

A = x ( 4 - 2x ) 4x - 2x^2 = 2 - 2 ( x^2 - 2 + 1 ) = 2 - 2 ( x + 1 ) ^2

A = 2 khi x = 1, y = 2

7 tháng 5 2020

Ta có \(x^2-\left(7+y\right)x+6+2y=0\Leftrightarrow y\left(x-2\right)=x^2-7x+6\)

Rõ ràng x=2 không thể là nghiệm nên chia cả 2 vế cho x-2 ta được

\(y=\frac{x^2-7x+6}{x-2}=\left(x-5\right)+\frac{-4}{x-2}\)

Do x,y nguyên nên x-2 là Ư(-4) mà \(Ư_{\left(-4\right)}=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

x-2-4-2-1124
x-201346
y0-3-60-36

đối chiếu điều kiện ở đề bài thì các cặp 

(x;y)={(1;0);(0;3);(-2;-6);(6;0);(4;-3);(3;-6)}

3 tháng 2 2018

\(VT=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

3 tháng 2 2018

không làm b nhé

16 tháng 12 2018

Bài 1 ( của toán lớp 10 mà )

Ta có : ( P )  đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được : 

           5 = a . 42 + b . 4 + c 

          5 = 16a     +  4b   + c 

         -c = 16a + 4b - 5 

   => c = -16a - 4b + 5             ( * )  

( P ) có đỉnh là  I(2;1)  

=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\)   ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 ) 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 ) 

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\) 

Thay a = 1 và b = -4 vào phương trình   ( * )  ta được : 

c = -16 . 1 - 4 .( -4 ) +5 = 5 

vậy ( P ) là \(y=x^2-4x+5\)

bảng biến thiên :

 

bạn tự vẽ (P) nha , quá dễ mà 

BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm 

\(\left(m^2-1\right)x+2m=5x-2v6\)

\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)

\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)

\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)

Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)

\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)

Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)

Bài 3 :

a )

\(\Delta=b^2-4ac\)

\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)

\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)

\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)

\(=16m^2-12m+36-16m^2-40m+8m+20\)

\(=-44m+56\)

phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow-44m+56\ge0\)

\(\Leftrightarrow-44m\ge-56\)

\(\Leftrightarrow m\le\frac{14}{11}\)

Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm  ( m bé hơn hoặc bằng 14/11 nha ) 

b ) x1 = x2 có nghĩa là nghiệm kép nha  ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy ) 

phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)

\(\Leftrightarrow-44m+56=0\)

\(\Leftrightarrow m==\frac{14}{11}\)

Học tốt !!!!!

                           

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)

12 tháng 5 2017

Ta có: 

2x+xy=4 

=> xy=4-2x

A=x2y=x.(xy)

=> A=x(4-2x)=4x-2x2

=> A=2-2+4x-2x2 = 2-2(x2-2x+1)

=> A=2-2(x-1)2

Ta thấy: (x-1)2\(\ge\)0 với mọi x

=> A \(\le\)2 với mọi x

=> Giá trị lớn nhất của A là 2

Đạt được khi x-1=0 hay x=1 và y=2

31 tháng 10 2019

Ta có: \(2x+xy=4\)

\(\Leftrightarrow2x^2+x^2y=4x\)

\(\Leftrightarrow x^2y=4x-2x^2=-2\left(x^2-2x\right)\)

\(=-2\left(x^2-2x+1-1\right)\)

\(=-2\left[\left(x-1\right)^2-1\right]\)

\(=-2\left(x-1\right)^2+2\le2\)

Vậy \(A_{max}=2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

31 tháng 10 2019

https://olm.vn/hoi-dap/detail/71287542505.html

18 tháng 2 2020

Ta có :

\(B+8=xy+yz+2zx+x^2+y^2+z^2\)

\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)

Do đó : \(B\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x^2=z^2=4\end{cases}}\)

21 tháng 2 2020

 ミ★ Đạt ★彡 làm đúng rồi nha.

Nhưng đoạn cuối bạn cần bổ sung là khi y = 0; x= -2 thì z=2 hoặc khi x=2 ;z=-2;y=0.

(x;z phải ngược dấu nha)

4 tháng 2 2016

cái này chỉ cần rút x hoặc y rồi thay vào A là ra mà an

4 tháng 2 2016

đăng lên cho vui vợi hoy =)) dù sao cũng camon Tuấn Anh nha =))

30 tháng 9 2016

Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có : 

\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)

A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2