K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CT
14 tháng 10 2022

Em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

21 tháng 2 2016

Đặt  \(A=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)

Vì  \(x=7\)  \(\Rightarrow\)  \(x+1=8\)   \(\left(\text{*}\right)\)

Thay \(\left(\text{*}\right)\)  vào  \(A\), ta được:

\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

      \(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)

\(A=x-5\)

Tại  \(x=7\)  thì khi đó,   \(A=7-5=2\)

Vậy,  giá trị cua biểu thức  \(x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)  là  \(2\)

25 tháng 7 2016

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

10 tháng 10 2017

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

1 tháng 12 2016

GTNN :

B=4x2+4x+11

= (2x)2+2*x*2+22+7

=(2x+2)2+7>= 7

dấu ''='' sảy ra khi 2x+2=0

                        => x = -1

vậy GTNN của biểu thức B là 7 tại x = -1

         

30 tháng 9 2018

\(B=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dau "=" xay ra  <=>  \(x=-\frac{1}{2}\)

Vay.....

31 tháng 8 2017

Ta có : A = (2 - x)(x + 4)

= 2x - x2 + 8 - 4x

= -x2 - 6x + 8 

= -(x2 + 6x) + 8

= -(x2 + 6x + 9 - 9) + 8

= -(x2 + 6x + 9) + 9 + 8

A = -(x + 3)2 + 17

Vì - (x + 3)2 \(\le0\forall x\)

Nên : A = -(x + 3)2 + 17 \(\le17\forall x\)

Vậy Amax = 17 khi x = -3

10 tháng 8 2020

a) A = -x2 - 4x - 2 = -x2 - 4x - 4 + 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2

\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)

Dấu " = " xảy ra <=> x + 2 = 0 => x = -2

Vậy AMax = 2 , đạt được khi x = -2

b) -2x2 - 3x + 5 = -2( x2 + 1/5x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9

\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9, đạt được khi x = -1

d) D = 5 - 8x - x2 = -x2 - 8x - 16 + 21 = -( x2 + 8x + 16 ) + 21 = -( x + 4 )2 + 21

\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)

Dấu " = " xảy ra <=> x + 4 = 0 => x = -4

Vậy DMax = 21 , đạt được khi x = -4

e) E = -3x( x + 3 ) - 7 = -3x2 - 9x - 7 = -3( x2 + 3x + 9/4 ) - 1/4 = -3( x + 3/2 )2 - 1/4

\(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

Dấu " = " xảy ra <=> x + 3/2 = 0 => x = -3/2

Vậy EMax = -1/4 , đạt được khi x = -3/2

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

14 tháng 9 2018

a) 

\(A=5x-x^2\)

\(A=-x^2+5x\)

\(A=-\left(x^2-5x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)

\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)

mà mũ chẵn luôn >= 0

\(\Rightarrow A\le\frac{25}{4}\)

Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy,.........

14 tháng 9 2018

b) 

\(B=x-x^2\)

\(B=-x^2+x\)

\(B=-\left(x^2-x\right)\)

\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)

mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow B\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy,..........

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)