Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
a)t có /x-2/ lớn hơn hoặc bằng 0
/x-4/lớn hơn hoặc bằng 0
suy ra /x-2/+/x-4/=A lớn hơn hoặc bằng 0
vậy giá trị nhỏ nhất cua A là =0
khi đó ;/x-2/=0 và/x-4/=0
suy ra x-2=0 vàx-4=0
vậy x=2 vàx=4
kết luận a có giá trị nhỏ nhất bằng 0 khi x=2 và x=4
b)tương tự
c)ta có /2x+4.5/ lớn hơn hoac =0
/x-2.7/lớn hơn hoac = 0
mà /2x+4.5/+/x-2.7/=0
từ 3 dieu tren suy ra khi dó
/2x+4.5/=0 và /x-2.7/=0
suy ra x=-2.25 và x=2.7
|x-3| > 0
|x-3| + 6 > 6
(|x-3| + 6)2 > 62
=> B = (|x-3| + 6)2 - 7 > 36 - 7 = 29
=> GTNN của B là 29, không có GTLN
<=> x - 3 = 0
<=> x = 3