
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

a) Đặt \(t=\frac{1}{x}\) , ta có : \(A=t^2-4t+5=\left(t^2-4t+4\right)+1=\left(t-2\right)^2+1\ge1\)
=> Min A = 1 <=> t = 2 <=> x = 1/2
b) Đặt \(z=\frac{1}{y}\) , ta có ; \(B=-9z^2-18z+19=-9\left(z^2+2z+1\right)+28=-9\left(z+1\right)^2+28\le28\)
=> Max B = 28 <=> z = -1 <=> y = -1

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

a)
\(A=2x^2-6x\)
\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}+\frac{9}{2}-\frac{9}{2}\)
\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)
Hay \(A\ge\frac{-9}{2};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy MIN \(A=\frac{-9}{2}\)\(\Leftrightarrow x=\frac{3}{2}\)
( xin lỗi bro mình thích làm căn )
Các bài khác làm nốt đi
a) \(2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Vậy GTLN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)
1. \(x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTNN của biểu thức là \(\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
2. \(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)
\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{-9}{2}\)
Vậy GTNN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(A=\sqrt{9-x^2}+4\) Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.
Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0
=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0
b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)
=> \(B=-6-\left(\sqrt{x}-3\right)^2\)
Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)
=> Bmin=-6 đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9
c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)
=> \(C=1-\left(1-\sqrt{x}\right)^2\) => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\)
=> Cmin = 1 Đạt được khi x=1

a) \(A=-x^2+4x+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\ge7\)
Dấu "=" xảy ra khi và chỉ khi x = 2
Vậy Max A = 7 <=> x = 2
b) \(B=-x^2+x=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max B = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
c) \(C=-2x^2+2x-5=-2\left(x^2-x\right)-5=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max C = \(-\frac{9}{2}\Leftrightarrow x=\frac{1}{2}\)
\(a,A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\) Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)
\(b,x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy \(Max_B=\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(c,2x-2x^2+5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-\left(x-\dfrac{1}{2}\right)-\dfrac{9}{2}\le\dfrac{-9}{2}\)Vậy \(Max_C=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(a,4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)Vậy Max A= 7 khi (x-2)2=0 \(\Rightarrow x=2\)
\(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy Max B=\(\dfrac{1}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
\(N=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}\)Vậy Max N = \(\dfrac{-39}{8}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
`A=-x^2+2x+9`
`A=-x^2+2x-1+10`
`A=-(x-1)^2+10`
Vì `-(x-1)^2 <= 0 AA x`
`=>-(x-1)^2+10 <= 10 AA x`
Hay `A = 10`
Dấu "`=`" xảy ra khi `(x-1)^2=0=>x-1=0=>x=1`
Vậy `GTLN` của `A` là: `10` khi `x=1`
thx bạn