Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+20y^2+8xy-4y+2015\)
\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2014\)
\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2014\ge2014\forall x\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x+4y=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}\)
Vậy GTNN của A là 2014 khi \(x=-2,y=\frac{1}{2}\)
\(B=\frac{x^2-2x+2016}{x^2}\)
\(=\frac{2016x^2-2.x.2016+2016^2}{2016x^2}\)
\(=\frac{\left(x^2-2.x.2016+2016^2\right)+2015x^2}{2016x^2}\)
\(=\frac{\left(x-2016\right)^2+2015x^2}{2016x^2}=\frac{\left(x-2016\right)^2}{2016x^2}+\frac{2015}{2016}\ge\frac{2015}{2016}\forall x\)
Dấu "=" xảy ra khi: \(x-2016=0\Rightarrow x=2016\)
Vậy GTNN của B là \(\frac{2015}{2016}\)khi x = 2016
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
a ) Ta có : \(\left|2x-1\right|\ge0\)
\(\Rightarrow\left|2x-1\right|+5\ge5\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Min_C=5\) khi và chỉ khi \(x=\frac{1}{2}\)
b ) Ta có : \(-\left|3-x\right|\le0\)
\(\Rightarrow2015-\left|3-x\right|\le2015\)
Dấu " = " xảy ra khi và chỉ khi \(3-x=0\)
\(x=3\)
Vậy \(Min_D=2015\) khi và chỉ khi \(x=3\)
Tìm giá trị nhỏ nhất cuả C = |2x-1|+5
= 2x - 1 + 5 = 0
2x - 1 = 0 - 5
2x - 1 = -5
2x = ( - 5 + 1 )
2x = -4
=> x = -2
2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015
2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015
2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015
2(1-1/x+1)=4028/2015
1-1/x+1=2014/2015
(x+1-1)/x+1=2014/2015
x/x+1=2014/2015
(x+1).2014=2015x
2014x-2015x=-2014
-x=-2014
x=2014
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\left(x+y+3\right)^2=1-y^2\)
Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)
B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)
B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)