\(2x^2-xy-y^2+3x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2\left(x^2+1\right)^2\frac{3x}{2}+\frac{9x^2}{4}-\frac{x^2}{4}=0\)

\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}\right)^2-\left(\frac{x}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+\frac{3x}{2}-\frac{x}{2}\right)\left(x^2+1+\frac{3x}{2}+\frac{x}{2}\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)

\(\forall x,\)\(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x=-1\)

Vậy tập nghiệm của pt là S={-1}

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

5 tháng 5 2020

\(2B=2x^2+2y^2-2xy-6x-6y+4058\)

\(2B=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\)

\(\Rightarrow B\ge2020\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-3=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)

Vậy ....

19 tháng 1 2016

1/. PT <=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^4+x^2\right)-\left(9x^2+9\right)}-\frac{3\left(x+2\right)}{\left(x^2+2x\right)+\left(3x+6\right)}-\frac{2}{x-3}=0\)

<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{x^2\left(x^2+1\right)-9\left(x^2+1\right)}-\frac{3\left(x+2\right)}{x\left(x+2\right)+3\left(x+2\right)}-\frac{2}{x-3}=0\)

<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)

<=>\(\frac{\left(13-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\) (1)

ĐKXĐ: \(x\ne3vàx\ne-3\)

(1) => \(13x-39-x^2+3x+6-3x+9-2x-6=0\)

<=> \(x^2-11x+30=0\)

<=> (x2-5x) -(6x - 30) = 0

<=> x(x - 5) -6 (x - 5) = 0

<=> (x-5) (x - 6) = 0 

<=> x = 5 hay x = 6 (nhận )

Vậy pt đã cho có tập nghiệm S = {5;6}

24 tháng 7 2019

\(H=2x^2+9y^2-6xy-6y-12y+2004\)

\(\Rightarrow2H=4x^2+18y^2-12xy-12x-24y+4008\)

             \(=\left(4x^2-12xy+9y^2\right)+9y^2-12x-24y+4008\)

             \(=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+9y^2-42y+49+3950\)

             \(=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3950\ge3950\)

\(\Rightarrow2H\ge3950\)

\(\Rightarrow H\ge1975\)

Dấu "=" tại \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

24 tháng 7 2019

\(J=x^2+xy+y^2-3x-3y+1999\)

   \(=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}-3x-3y+1999\)

   \(=\left(x+\frac{y}{2}\right)^2-3\left(x+\frac{y}{2}\right)+\frac{9}{4}+3\left(\frac{y^2}{4}-\frac{y}{2}+\frac{1}{4}\right)+1996\)

    \(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+1996\ge1996\)

Dấu "=" tại \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3