
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4
B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100
C, = 5x2+5 >=5

1, ta có :
A = - ( x2 + 10x + 11 ) = - ( x2 + 2 .x.5 + 52 ) + 14
= 14 - ( x + 5 )2 < hoặc = 14
suy ra GTLN của A = 14
khi và chỉ khi x + 5 = 0
suy ra x = -5
Vậy GTLN của A = 14 , Khi và chỉ khi x = -5
MÌNH XIN LỖI BẠN NHƯNG MÌNH CHỈ BIẾT LÀM CÂU ĐẦU TIÊN THÔI


a) \(4x^2+12x+10=\left(2x+3\right)^2+1\ge1\)
Dấu "="\(\Leftrightarrow x=-2\)
b) \(B=\left(3x-1\right)^2+4\ge4\)
Dấu "="\(\Leftrightarrow x=\frac{1}{3}\)
a, \(A=4x^2+12x+10\)
\(=\left(2x+1\right)^2+1\ge1\forall x\)
Dấu"=" xảy ra<=> \(\left(2x+1\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,B=9x^2-6x+5\)
\(=\left(3x-1\right)^2+4\ge4\forall x\)
Dấu"=" xảy ra<=> \(\left(3x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{3}\)

\(A=2x^2-6x-\sqrt{7}\)
\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)
Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)
vì |x-2| > 0
=> 10 - |x-2| < 10
=> Amax= 10 <=> x-2=0 => x = 2
k mik mình giải nốt
vì |x‐2| > 0
=> 10 ‐ |x‐2| < 10
=> Amax= 10 <=> x‐2=0 => x = 2