Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-6x-\sqrt{7}\)
\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)
Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)
A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4
B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100
C, = 5x2+5 >=5
ĐKXĐ; ...
a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)
\(P_{min}=5\) khi \(x=-2\)
b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)
\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)
\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)
\(=1-\left(x-1\right)^2\le1\)
\(Q_{max}=1\) khi \(x=1\)
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
a: \(A=3\left(x^2-\dfrac{4}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{17}{9}\right)\)
\(=3\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{3}>=\dfrac{17}{3}\)
Dấu '=' xảy ra khi x=2/3
b: \(=9x^2-6x+1+4x^2-20x+25-4\)
\(=13x^2-26x+22\)
\(=13\left(x^2-2x+\dfrac{22}{13}\right)\)
\(=13\left(x^2-2x+1+\dfrac{9}{13}\right)\)
\(=13\left(x-1\right)^2+9>=19\)
Dấu '=' xảy ra khi x=1
a) \(4x^2+12x+10=\left(2x+3\right)^2+1\ge1\)
Dấu "="\(\Leftrightarrow x=-2\)
b) \(B=\left(3x-1\right)^2+4\ge4\)
Dấu "="\(\Leftrightarrow x=\frac{1}{3}\)
a, \(A=4x^2+12x+10\)
\(=\left(2x+1\right)^2+1\ge1\forall x\)
Dấu"=" xảy ra<=> \(\left(2x+1\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,B=9x^2-6x+5\)
\(=\left(3x-1\right)^2+4\ge4\forall x\)
Dấu"=" xảy ra<=> \(\left(3x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{3}\)