K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A=8/ x^2 - 2x +5.

Để A đạt giá trị lớn nhất thid x^2 - 2x + 5 phải đạt giá trị nhỏ nhất.

Ta có: x^2 - 2x +5= (x^2 - 2x + 1) + 4=(x - 1)^2 +4

Vì (x - 1)^2 \(\ge\)0 nên (x - 1)^2 + 4\(\ge\)4

=> Min x^2 - 2x + 5=4

=>Max A=8/4=2 <=> (x - 1)^2=0 

                             <=> x = 1

Vậy Max A= 2 khi và chỉ khi x=1

27 tháng 3 2019

TA có 8/x^2-2x+5=8/x^2-2x+1+4=8/(x-1)^2+4

Vì (x-1)^2 >= 0=> (x-1)^2+4>=4 =>8/(x-1)^2+4<=2 => 8/x^2-2x+5<=2

Dấu = xảy ra khi và chỉ khi x-1=0  

                                            x=1

Vậy GTLN của bt là 2 khi x=1

9 tháng 7 2019

A=-2.(-1)+ 17

A= 15

B= 7- 6+10 

B=11

C=5-1-15

C=-11

D=0+2+4+10

D= 16

- xin lỗi nếu ko giải chi tiết nha-

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

19 tháng 2 2023

b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)

Để Q đạt max 

thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0 

lại có \(x\inℤ\) 

nên 12 - x = 1 

<=> x = 11 

Khi đó Q = 17

Vậy Qmax = 5 khi x = 11 

9 tháng 7 2017

anh ấy thật đẹp trai

12 tháng 7 2021

a

C= |x-1| + |x-5|

Do x-1 + x-5 luôn > 0

=> x-1 + x-5 = 0

=> 2x -6 = 0

=> 2x = 6

=> x = 3

12 tháng 7 2021

mình ghi nhầm, lớn hơn hoặc bằng 0 nha

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0