K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

\(A=\frac{3x^2+4x}{x^2+1}=\frac{4x^2+4-x^2+4x-4}{x^2+1}=\frac{4\left(x^2+1\right)-\left(x-2\right)^2}{x^2+1}=4-\frac{\left(x-2\right)^2}{x^2+1}\ge4\)

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy Max A = 4 <=> x = 2

3 tháng 8 2018

tìm gí trị nhỏ nhất 

Ta có \(A=x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\Rightarrow A\ge\frac{3}{4}\)

Dấu"=" xảy ra khi và chỉ khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

Ta có \(B=4x^2-3x+2=4x^2-2.2x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}=\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\)

Vì \(\left(2x-\frac{3}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\ge\frac{23}{16}\Rightarrow B\ge\frac{23}{16}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(2x-\frac{3}{4}\right)^2=0\Leftrightarrow2x-\frac{3}{4}=0\Leftrightarrow2x=\frac{3}{4}\Leftrightarrow x=\frac{3}{8}\)

Vậy giá trị nhhor nhất của B là \(\frac{23}{16}\)tại \(x=\frac{3}{8}\)

Ta có \(C=3x^2+x-1=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)=3\left(x^2+2.\frac{1}{6}x+\frac{1}{36}-\frac{13}{36}\right)=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{6}=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy giá trị nhỏ nhất của C là \(-\frac{13}{12}\)tại \(x=-\frac{1}{6}\)

tìm giá trị lớn nhất

Ta có \(A=x+1-x^2=-\left(x^2-x-1\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x+\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị lớn nhất của A là \(\frac{5}{4}\)tại \(x=-\frac{1}{2}\)

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

26 tháng 7 2018

\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)

\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)

Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)

GTLN  của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)

cn lại lm tg tự  nha bn

16 tháng 10 2016

*) Tìm giá trị nhỏ nhất:

\(M=x^2-3x+3=\left(x^2-2.1,5x+1.5^2\right)+0,75=\left(x-1,5\right)^2+0,75\ge0,75\)

Dấu "=" xảy ra khi \(\left(x-1,5\right)^2=0\Rightarrow x=1,5\)

Vậy \(minM=0,75\) khi \(x=1,5\)

*) Tìm giá trị lớn nhất:

\(N=4x-x^2=4-x^2+4x-4=4-\left(x^2-4x+4\right)=4-\left(x-2\right)^2\le4\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxN=4\) khi \(x=2\)

16 tháng 10 2016

đừng làm tắt nhé

 

\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Dấu '' =  '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTLN của biểu thức = 3/4 khi x=-1/2

\(b,2+x-x^2=-x^2+x+2\)

\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)

Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2

Vậy GTNN của biểu thức = 9/4 khi x=1/2

\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)

Dấu ''='' xảy ra khi x-2=0 => x=2

Vậy GTLN của biểu thức = -3 khi x=2

Các câu khác tương tự

\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)

Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2

Vậy GTNN của biểu thức =10 khi x=-1/2

\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)

Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)

Dấu ''='' xảy ra khi x-1=0 => x=1

Vậy GTNN của biểu thức =-2 khi x=1

\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)

Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy GTNN của biểu thức =1 khi x=1 và y=2