K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a, \(A=x^4-2x^3+2x^2-2x+3\)

\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)

\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)

\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)

\(=\left(x^2+1\right)\left(x-1\right)^2+2\)

Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)

\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x = 1

Vậy Amin = 2 khi x = 1

b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)

đề sai ko

c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra khi x=1

Vậy Cmin = 5 khi x = 1

2 tháng 7 2018

2/

+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)

Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)

Dấu "=" xảy ra khi x=y=1/2

Vậy Dmax=7/2 khi x=y=1/2

+) Đề sai

+)bài này là tìm min 

 \(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Gmin=11/4 khi x=3//2

26 tháng 7 2018

\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)

\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)

Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)

GTLN  của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)

cn lại lm tg tự  nha bn

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

29 tháng 6 2016

bài 1:

b, x2 - 6x +10=x2 - 2.x.3 +9 +1=(x - 3)2 +1

Vì (x-3)2  >= 0 với mọi x

=> (x-3)2 +1 >= 1 với mọi x

vậy GTNN của biểu thức bằng 1 <=> x-3=0<=> x=3

15 tháng 6 2018

Tìm GTNN

a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)

b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)

c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

15 tháng 6 2018

@alibaba nguyễn giúp mình với

\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Dấu '' =  '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTLN của biểu thức = 3/4 khi x=-1/2

\(b,2+x-x^2=-x^2+x+2\)

\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)

Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2

Vậy GTNN của biểu thức = 9/4 khi x=1/2

\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)

Dấu ''='' xảy ra khi x-2=0 => x=2

Vậy GTLN của biểu thức = -3 khi x=2

Các câu khác tương tự

\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)

Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2

Vậy GTNN của biểu thức =10 khi x=-1/2

\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)

Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)

Dấu ''='' xảy ra khi x-1=0 => x=1

Vậy GTNN của biểu thức =-2 khi x=1

\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)

Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy GTNN của biểu thức =1 khi x=1 và y=2

a: \(=4x^2+20x+25+x^2+6x+9-8\)

\(=5x^2+26x+26\)

\(=5\left(x^2+\dfrac{26}{5}x+\dfrac{26}{5}\right)\)

\(=5\left(x^2+2\cdot x\cdot\dfrac{13}{5}+\dfrac{169}{25}-\dfrac{39}{25}\right)\)

\(=5\left(x+\dfrac{13}{5}\right)^2-\dfrac{39}{5}>=-\dfrac{39}{5}\)

Dấu '=' xảy ra khi x=-13/5

b: \(=x^2-8x+16+x+3\)

\(=x^2-7x+19\)

\(=x^2-7x+\dfrac{49}{4}+\dfrac{27}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>=\dfrac{27}{4}\)

Dấu '=' xảy ra khi x=7/2

c: \(C=15x-1+x^2-18x+81-27\)

\(=x^2-3x+53\)

\(=x^2-3x+\dfrac{9}{4}+\dfrac{203}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{203}{4}>=\dfrac{203}{4}\)

Dấu '=' xảy ra khi x=3/2

25 tháng 6 2017

a.x2+x+1=x2+x+\(\frac{1}{4}\)+\(\frac{3}{4}\)=(x+\(\frac{1}{2}\))2+\(\frac{3}{4}\)\(\ge\frac{3}{4}\) (dấu bằng xẩy ra khi và chỉ khi x=\(-\frac{1}{2}\))tìm min

b.bạn xem lại đề bài

c.giải tương tự câu a(tìm min)

d.(2x-1)2+(x+2)=4x2-4x+1+x+2=4x2-3x+3..........(tìm min)

e.4-x2+2x=-x2+2x-1+5=-(x-1)2+5\(\le5\)(dấu bằng xảy ra khi và chỉ khi x=1) tìm max

f.4x-x2=-x2+4x-4+4=-(x-2)2+4 (tương tự câu e) (tìm max)

g.1-4x-2x2=-2x2-4x-2+3=-2(x+1)2+3 (giống câu trên) (tìm max)

h.x2-4x+y2+2y-5=x2-4x+4+y2+2y+1-10=(x-2)2+(y+1)2-10\(\ge\)-10 (dấu bằng xảy ra khi và chỉ khi x=2.y=-1)(tìm min)

3 tháng 8 2018

tìm gí trị nhỏ nhất 

Ta có \(A=x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\Rightarrow A\ge\frac{3}{4}\)

Dấu"=" xảy ra khi và chỉ khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

Ta có \(B=4x^2-3x+2=4x^2-2.2x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}=\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\)

Vì \(\left(2x-\frac{3}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\ge\frac{23}{16}\Rightarrow B\ge\frac{23}{16}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(2x-\frac{3}{4}\right)^2=0\Leftrightarrow2x-\frac{3}{4}=0\Leftrightarrow2x=\frac{3}{4}\Leftrightarrow x=\frac{3}{8}\)

Vậy giá trị nhhor nhất của B là \(\frac{23}{16}\)tại \(x=\frac{3}{8}\)

Ta có \(C=3x^2+x-1=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)=3\left(x^2+2.\frac{1}{6}x+\frac{1}{36}-\frac{13}{36}\right)=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{6}=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy giá trị nhỏ nhất của C là \(-\frac{13}{12}\)tại \(x=-\frac{1}{6}\)

tìm giá trị lớn nhất

Ta có \(A=x+1-x^2=-\left(x^2-x-1\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x+\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị lớn nhất của A là \(\frac{5}{4}\)tại \(x=-\frac{1}{2}\)