K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

A=522012 - [ 2012.(0,25 + 1) - 40 -25.(x -1)]^2012

A=522012 - [2515 - 40 - 25.(x - 1)]^2012

A=522012 - [2475 - 25.( x - 1)]^2012

*Để A có giá trị lớn nhất thì [2475 - 25.(x - 1)]^2012 phải là số tự nhiên bé nhất. (vì x^2012 >0 )

=> [2475 - 25.(x - 1)]^2012 =0

=>2475 - 25.(x-1) =0

=> 25.(x-1) = 2475

=> x - 1 = 99

=> x = 100

Vậy x = 100.

1 tháng 9 2020

1) Thay x = 38 vào p ta có P = \(\frac{38+64}{38-36}=\frac{102}{2}=51\)

b) Khi P = 101 => \(\frac{x+64}{x-36}=101\)

=> x + 64 = 101(x -36)

=> x + 64 = 101x - 3636

=> 101x - x = 3636 + 64

=> 100x = 3700

=> x = 37

c) Ta có P = \(\frac{x+64}{x-36}=\frac{x-36+100}{x-36}=1+\frac{100}{x-36}\)

Vì 1 là số tự nhiên => \(\frac{100}{x-36}\inℕ^∗\Leftrightarrow100⋮x-36\Rightarrow x-36\inƯ\left(100\right)\)

=> X - 36 \(\in\left\{1;2;4;5;10;20;25;50;100\right\}\)

=> \(x\in\left\{37;38;40;41;46;56;61;86;136\right\}\)

2) a) Thay x = 26 vào B ta có B = \(64:\left(26-16\right)=64:10=6,4\) 

b) Khi B = 80

=> 64(x - 16) = 80

=> x - 16 = 1,25

=> x = 17,25

c) Để B đạt GTLN

=> x - 16 đạt GTNN

mà x - 6 khác 0

=> x - 16 = 1 

=> x = 17

Khi đó B = 64 : (17 - 16) = 64

Vậy GTLN của B là 64 khi x = 1

4 tháng 7 2023

1) Thay x = 38 vào p ta có P = 38+6438−36=1022=51

b) Khi P = 101 => �+64�−36=101

=> x + 64 = 101(x -36)

=> x + 64 = 101x - 3636

=> 101x - x = 3636 + 64

=> 100x = 3700

=> x = 37

c) Ta có P = �+64�−36=�−36+100�−36=1+100�−36

Vì 1 là số tự nhiên => 100�−36∈N∗⇔100⋮�−36⇒�−36∈Ư(100)

=> X - 36 ∈{1;2;4;5;10;20;25;50;100}

=> �∈{37;38;40;41;46;56;61;86;136}

2) a) Thay x = 26 vào B ta có B = 64:(26−16)=64:10=6,4 

b) Khi B = 80

=> 64(x - 16) = 80

=> x - 16 = 1,25

=> x = 17,25

c) Để B đạt GTLN

=> x - 16 đạt GTNN

mà x - 6 khác 0

=> x - 16 = 1 

=> x = 17

Khi đó B = 64 : (17 - 16) = 64

Vậy GTLN của B là 64 khi x = 1

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

16 tháng 12 2023

\(C=\left(x-5\right)^2+10\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow C=\left(x-5\right)^2+10\ge10\forall x\)

Dấu \("="\) xảy ra khi: \(x-5=0\Leftrightarrow x=5\)

Vậy \(Min_C=10\) khi \(x=5\).

16 tháng 12 2023

x là gì vậy bạn chracter debate

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

15 tháng 7 2018

a)  \(3\left(4-2x\right)-2\left(x+3\right)=12-7x\)

\(\Leftrightarrow\)\(12-6x-2x-6=12-7x\)

\(\Leftrightarrow\)\(6-8x=12-7x\)

\(\Leftrightarrow\)\(x=-6\)

Vậy...

b)  \(\left|16+\right|3\left(x-2\right)||-5=20\)

\(\Leftrightarrow\)\(\left|16+\right|3\left(x-2\right)||=25\)(1)

Ta thấy:  \(\left|3\left(x-2\right)\right|\ge0\)\(\Rightarrow\)\(16+\left|3\left(x-2\right)\right|>0\)

nên từ (1)   \(\Rightarrow\)  \(16+\left|3\left(x-2\right)\right|=25\)

                   \(\Leftrightarrow\)\(\left|3\left(x-2\right)\right|=9\)

                   \(\Leftrightarrow\)  \(\orbr{\begin{cases}3\left(x-2\right)=9\\3\left(x-2\right)=-9\end{cases}}\)

                  \(\Leftrightarrow\) \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

Vậy....

15 tháng 7 2018

c)   \(\left|-5-3^2\right|-||3x+5|-7.2^3|=3^9:3^7\)

\(\Leftrightarrow\)\(14-||3x+5|-56|=9\)

\(\Leftrightarrow\)\(||3x+5|-56|=5\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|-56=5\\\left|3x+5\right|-56=-5\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|=61\\\left|3x+5\right|=51\end{cases}}\)

đến đây bn giải tiếp nhé

15 tháng 3 2020

Mọi người ghi cả cách giải nhé

2 tháng 5 2016

Nhận xét:

/x-5/ \(\ge0\) với mọi x \(\in\) Z, dấu = xảy ra <=> x=5

/x-5/+2012\(\ge2012\) với mọi x \(\in Z\), dấu = xảy ra <=> x=5

=> 4/(/x-5)+2012)\(\le\) 4/2012=1/503 với mọi x thuộ Z, dấu = xảy ra <=> x=5

Vậy Max B=1/503 <=>x=5