K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

\(n^2+12n=n\left(n+12\right)\)

Để \(n^2+12n\)là số nguyên tố thì có một thừa số bằng 1

Mặt khác vì \(n< n+12\Rightarrow n=1\)

Vậy \(n=1\)

5 tháng 7 2019

Thêm đk n thuộc N nha! Mình thử thôi,ko chắc đâu

Với n = 0 thì không phải là số nguyên tố

Với n= 1 => là số nguyên tố

Với n > 1 thì n2+12n = n(n+12) có nhiều hơn hai ước số nên là hợp số => loại

Vậy n = 1

\(\frac{n+1}{n-2}\)có giá trị nguyên

=> n+1\(⋮\)n-2=> n-2+3\(⋮\)n-2

=> 3\(⋮\)n-2=> n-2\(\in\){1,3,-1,-3}=>n\(\in\){3,5,1,-1}

12 tháng 4 2019

ta có n+1=n-2+3

vì n-2 chia hết n-2 suy ra để n-2+3 chia hết n-2 thì 3 chia hết n-2 

suy ra n-2 thuộc Ư(3) = {1;-1;3;-3}

ta có bảng 

n-2                 1                         3                      -1                     -3

n                      3                      5                         1                      -1

C/L                 C                      C                       C                     C

12 tháng 7 2016

Tìm tất cả các số tự nhiên n để :

a/ n^2 +12n là số nguyên tố

b/ 3^n +6 là số nguyên tố

12 tháng 4 2016

1 nha bạn

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

$n^2+12n=n(n+12)$ nên để $n^2+12n$ là số nguyên tố thì 1 trong 2 thừa số $n, n+12$ bằng $1$, số còn lại là số nguyên tố.

Mà $n< n+12$ nên $n=1$

Khi đó: $n^2+12n=1^2+12.1=13$ là số nguyên tố (thỏa mãn)

 

21 tháng 2 2023

a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)

\(\Leftrightarrow n\ne\dfrac{-3}{2}\)

b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)

\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)

\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)

Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)

\(\Leftrightarrow2n+3\in U\left(17\right)\)

mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)

\(\Rightarrow n\in\left(-1;-2;7;-10\right)\) 

Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)

21 tháng 2 2023

5 tháng 1 2015

Ta có:

Gọi A=n^2+12n=n.n+12n=(12+n).n

=> 12+n và n là ước của A 

Vì A là 1 số nguyên tố nên A chỉ có 2 ước trong đó có 1 và cũng là 2 ước 12+n và n

=> 1 trong 2 ước 12+n và n bằng 1

12+n không thể bằng 1 vì n là số tự nhiên nên kết quả 12+n bé nhất là 12 (12+0)

=> n=1.