Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)
Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow4>0\left(lđ\right)\)
\(\Rightarrow\)Pt luôn có hai ng pb với mọi m
\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)
Có \(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)
\(\Leftrightarrow2=4m+2\)
\(\Leftrightarrow m=0\)
Vậy...
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Δ=(2n+2)^2-4(n^2+2)
=4n^2+8n+4-4n^2-8
=8n-4
Để phương trình có hai nghiệm phân biệt thì 8n-4>0
=>n>1/2
x1^3+x2^3=1
=>(x1+x2)^3-3x1x2(x1+x2)=1
=>(2n+2)^3-3(n^2+2)(2n+2)=1
=>8n^3+24n^2+24n+8-3(2n^3+2n^2+4n+4)=1
=>8n^3+24n^2+24n+8-6n^3-6n^2-12n-12-1=0
=>2n^3+18n^2+12n-5=0
=>\(n\in\varnothing\)
a*c<0 nên pt luôn có hai nghiệm phân biệt
(2x1-x2)^2+x1-x2(x1+x2)=18
=>4x1^2-4x1x2+x2^2+x1-x2x1-x2^2=18
=>4x1^2-5x1x2+x1-18=0
=>4x1^2+x1-5*(-3)-18=0
=>4x1^2+x1-3=0
=>4x1^2+4x1-3x1-3=0
=>(x1+1)(4x1-3)=0
=>x1=-1 hoặc x1=3/4
=>x2=3 hoặc x2=-4
x1+x2=2m-2
=>2m-2=2 hoặc 2m-2=-13/4
=>m=2 hoặc m=-5/8
Phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 có a = 1 ≠ 0 và
∆ ' = ( m − 2 ) 2 – 2 m + 5 = m 2 – 6 m + 9 = ( m – 3 ) 2 ≥ 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m − 4 x 1 . x 2 = 2 m − 5
X é t x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4 ⇔ ( x 1 + x 2 ) – 2 x 1 . x 2 − 4 < 0
⇔ 2m – 4 – 2(2m – 5) – 4 < 0 ⇔ −2m + 2 < 0 m > 1
Vậy m > 1 là giá trị cần tìm
Đáp án: A