Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m+4\right)^2-4\left(3m+2\right)\)
\(=4m^2+16m+16-12m-8\)
\(=4m^2+4m+8\)
\(=\left(2m+1\right)^2+7>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=3m+2\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\-2x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2m+1\\x_1+x_2=2m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2}{3}m+\dfrac{1}{3}\\x_2=2m+4-\dfrac{2}{3}m-\dfrac{1}{3}=\dfrac{4}{3}m+\dfrac{11}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=3m+2\)
nên \(\left(\dfrac{2}{3}m+\dfrac{1}{3}\right)\left(\dfrac{4}{3}m+\dfrac{11}{3}\right)=3m+2\)
\(\Leftrightarrow m^2\cdot\dfrac{8}{9}+\dfrac{22}{9}m+\dfrac{4}{9}m+\dfrac{11}{9}=3m+2\)
\(\Leftrightarrow m^2\cdot\dfrac{8}{9}-\dfrac{1}{9}m-\dfrac{7}{9}=0\)
\(\Leftrightarrow8m^2-m-7=0\)
\(\Leftrightarrow\left(m-1\right)\left(8m+7\right)=0\)
=>m=1 hoặc m=-7/8
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m-1)^2+2m-5\geq 0$
$\Leftrightarrow m^2-4\geq 0$
$\Leftrightarrow m\geq 2$ hoặc $m\leq -2$
Áp dụng định lý Viet: \(\left\{\begin{matrix}
x_1+x_2=2(1-m)\\
x_1x_2=-2m+5\end{matrix}\right.\)
\(2x_1+3x_2=-5\)
\(\Leftrightarrow 2(x_1+x_2)+x_2=-5\Leftrightarrow 4(1-m)+x_2=-5\)
\(\Leftrightarrow x_2=4m-9\)
\(x_1=2(1-m)-x_2=11-6m\)
$x_1x_2=-2m+5$
$\Leftrightarrow (4m-9)(11-6m)=-2m+5$
Giải pt này suy ra $m=2$ hoặc $m=\frac{13}{6}$ (đều thỏa mãn)
dạ mình cám ơn ạ nma cho mình hỏi chút cái chỗ 2x1+x2=3 và x1+x2= gì v ạ
Δ=(-2)^2-4(m-1)=4-4m+4=8-4m
Để phương trình có hai nghiệm thì 8-4m>=0
=>m<=2
x1+x2=2; x1x2=m-1
=>x1=2-x2
=>x1+1=3-x2
x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2(m-1)=4-2m+2=6-2m
=>x1^2=6-2m-x2^2
2x1(x1-x2)+3=7m+(x2+2)^2
=>2x1^2-2x1x2+3=7m+x2^2+2x2+4
=>2(6-2m-x2^2)-2x1x2+3-7m-x2^2-2x2-4=0
=>2(6-2m-x2^2)-2x2(3-x2)-7m-1=0
=>12-4m-2x2^2-6x2-2x2^2-7m-1=0
=>-4x2^2-6x2-11m+11=0
=>4x2^2+6x2+11m-11=0(1)
Để phương trình (1) có nghiệm thì 6^2-4*4*(11m-11)>=0
=>36-16(11m-11)>=0
=>16(11m-11)<=36
=>11m-11<=9/4
=>11m<=53/4
=>m<=53/44
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu
Mà \(x_1>x_2\Rightarrow\left\{{}\begin{matrix}x_2< 0\\x_1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=x_1\\\left|x_2\right|=-x_2\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left|2x_1\right|-\left|x_2\right|=2+x_1\)
\(\Leftrightarrow2x_1+x_2=2+x_1\)
\(\Leftrightarrow x_1+x_2=2\)
\(\Leftrightarrow m-1=2\)
\(\Rightarrow m=3\)
a*c<0 nên pt luôn có hai nghiệm phân biệt
(2x1-x2)^2+x1-x2(x1+x2)=18
=>4x1^2-4x1x2+x2^2+x1-x2x1-x2^2=18
=>4x1^2-5x1x2+x1-18=0
=>4x1^2+x1-5*(-3)-18=0
=>4x1^2+x1-3=0
=>4x1^2+4x1-3x1-3=0
=>(x1+1)(4x1-3)=0
=>x1=-1 hoặc x1=3/4
=>x2=3 hoặc x2=-4
x1+x2=2m-2
=>2m-2=2 hoặc 2m-2=-13/4
=>m=2 hoặc m=-5/8