K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

Tham khảo:

https://hoctap.coccoc.com/toan?query=9x%5E2-36

16 tháng 1 2021

a/ \(\Leftrightarrow9x^2=36\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow x=\pm2\)

b/ \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) (do \(x^2+\dfrac{1}{2}>0\))

\(\Leftrightarrow x=\pm1\)

c/ Có \(\left|x+4\right|\ge0\forall x\)

=> \(\left|x+4\right|+5\ge5>0\forall x\)

\(\Rightarrow\left|x+4\right|+5=0\left(vô-lí\right)\)

\(\Rightarrow x\in\varnothing\)

d/ \(\sqrt{2x}-3-1=0\)

\(\Leftrightarrow\sqrt{2x}=4\)

\(\Leftrightarrow2x=16\)

\(\Leftrightarrow x=8\)

16 tháng 1 2021

thank youyeu

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

16 tháng 4 2020

(x+1)2(y2-6)=0

=> \(\orbr{\begin{cases}\left(x+1\right)^2=0\\y^2-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\y^2=6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\y=\pm\sqrt{6}\end{cases}}}\)

vậy........

28 tháng 2 2022

aaaaaaaaa

15 tháng 4 2020

\(\left(x+1\right)\left(x^2+1\right)=0\)

=> \(\left(x+1\right)=0\) hoac  \(\left(x^2+1\right)=0\)

\(x+1=0\Rightarrow x=-1\)

\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x=-1\)

hok tot

15 tháng 4 2020

(x+1)(x2+1)=0

Ta có: x2+1 >0 với mọi x

=> Để (x+1)(x2+1)=0

=> x+1=0

=> x=-1

22 tháng 1 2018

          \(\left(x-1\right)\left(x+1\right)\left(x^2+\frac{1}{2}\right)=0\)

Vì    \(x^2+\frac{1}{2}>0\)  nên      \(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

                                                  \(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy....

23 tháng 3 2022

a.\(16-x^2=0\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x^2=4^2\)

\(\Leftrightarrow x=\pm4\)

b.\(\left(x+1\right)^2+\left(2y-3\right)^{10}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(2y-3\right)^{10}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2y-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{2}\end{matrix}\right.\)