Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
Bài này đúng đề nhé chị Quản Lý
Ta có : \(x+y-2=0\)
\(\Rightarrow x+y=2\)
\(E=x^3+x^2y-2x^2-xy^2+2xy+2x+2y-2-x^2y\)
\(E=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2x+2y-2\)
\(E=x^2\left(x+y-2\right)-xy\left(x+y\right)+2xy+2\left(x+y\right)-2\)
\(E=x^2.0-2xy+2xy+2.2-2\)
\(E=0+0+4-2\)
\(E=2\)
Vậy \(E=2\)
a, \(C=A-B=\left(x^2-10xy+2017y^2+2y\right)-\left(5x^2-8xy+2017y^2+3y-2018\right)\)
\(=x^2-10xy+2017y^2+2y-5x^2+8xy-2017y^2-3y+2018\)
\(=-4x^2-2xy-y+2018\)
b, \(C=-4x^2-2xy-y+2018\)
\(=-2x\left(2x+y\right)-y+2018\)
\(=-2x-y+2018=-1+2018=2017\)
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
Có biểu thức \(A=2x\left(x+2y\right)-x+4-2y\)
a) Thay \(x=-1;y=2\) vào biểu thức trên, ta có :
\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]-\left(-1\right)+4-2.2\)
\(A=\left(-2\right)+3+1+4-4=\left(-2\right)+4=2\)
b) Xét 2 trường hợp của \(|y|=3:y=3;y=-3\) và thay x = 1 vào các biểu thức
Có TH1 : \(A=2.1\left(1+2.3\right)-1+4-2.1=12-1+4=15\). TH2 :
\(A=2.1\left[1+2\left(-3\right)\right]-1+4-2.\left(-3\right)=\left(-10\right)-1+4-\left(-6\right)=-1\)
c) Thay \(x=-2y\) vào biểu thức, ta có : \(A=2x\left[\left(-2y\right)+2y\right]-x+4+x\)
\(A=2x.0+\left(x-x\right)+4=0+0+4=4\)
Ôí chồi chồi chồi !
\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]....\)
''....'' lak vế sau
Cậu giỏi ghê, bên trên lak nhân DẤU nhân đấy.
kết quả là 21 nha
2x=5y <=> \(\frac{x}{5}=\frac{y}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\)
<=> x=5k (1)
<=> y=2k (2)
x.y=2k.5k=10
<=> 10k2=10
<=> k2=1
<=> k=1
Thay k=1 vào (1) và (2):
x=5k=5.1=5
y=2k=2.1=2
Thay x=5 và y=2 vào |5x-2y| ta có:
|5.5-2.2|=|25-4|=|21|=21