K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)

-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)

\(\Rightarrow x=-1;y=2\)

-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:

\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

20 tháng 12 2023

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

20 tháng 1 2017

có 4 trường hợp xảy ra

trường hợp thứ nhất bạn thay cả x và y lớn hơn 0

trường hợp thứ 2 bạn thay cả x và y bé hơn 0

trường hợp thứ 3  bạn thay x lớn hơn 0 y bé hơn 0

trường hợp thứ 4  bạn thay y lớn hơn 0 x bé hơn 0

22 tháng 1 2017

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

22 tháng 1 2017

\(P=2.2^3-15+2016=2017\)

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha