Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng thủ thuật giống một bài toán lớp 3
Cho m=n=0 ta được \(f\left(0\right)=2f^2\left(0\right)\Rightarrow f\left(0\right)=0\)
Cho m=1; n=0 ta được \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)=1\end{cases}}\). Ta xét trường hợp f(1)=1, với f(1)=0 ta xét tương tự, với f(1)=1 ta lần lượt tính được
\(\hept{\begin{cases}f\left(2\right)=f\left(1^2+1^2\right)=f^2\left(1\right)+f^2\left(1\right)=2\\f\left(4\right)=f\left(2^2+0^2\right)=f^2\left(2\right)+f^2\left(0\right)=4\\f\left(5\right)=f\left(2^2+1^2\right)=f^2\left(2\right)+f^2\left(1\right)=5\end{cases}}\)
áp dụng thủ thuật của một bài toán lớp 3. Ta không tính trực tiếp f(3) nhưng ta lại có \(f^2\left(5\right)=f\left(25\right)=f\left(3^2+4^2\right)=f^2\left(4\right)+f^2\left(3\right)\)từ đó ta tính được f(3)=3
Tương tự như vậy ta có thể tính được f(6) nhờ vào đẳng thức 62+82=102 trong đó \(f\left(8\right)=f\left(2^2+2^2\right)=2f^2\left(2\right)=8;f\left(10\right)=f\left(3^2+1^2\right)=f^2\left(3\right)+f^2\left(1\right)=10\)
Tiếp tục để tính f(7) ta để ý 72+12=50 =52+52, từ đó f(7)=7. Cũng như thế do đó 112+22=102+52 nên suy ra f(11)=11
Cách làm này có thể tổng quát hóa như thế nào? Ý tưởng là \(m^2+n^2=p^2+q^2\left(1\right)\)thì \(f^2\left(m\right)+f^2\left(n\right)=f^2\left(q\right)+f^2\left(p\right)\)do đó nếu tính được \(f\left(n\right);f\left(q\right);f\left(p\right)\)thì f(m) cũng sẽ tính được
Làm thế nào để có những đẳng thức dạng (1) dưới dạng tổng quát, cho phép ta chứng minh f(n)=n với mọi n bằng quy nạp? Chú ý rằng (1) có thể viết lại thành (m-p)(m+p)=(q-n)(q+n)=N. Do đó nếu chọn 2 số N có 2 cách phân tích thành tích của những số cùng tính chẵn hoặc lẻ, ta sẽ tìm được nghiệm cho (1). Chọn N=8k=4k.2=4.2k và N=16k=4k.4=2k.8 ta được hệ
\(\hept{\begin{cases}m-p=2;m+p=4k;q-n=4;q+n=2k\\m-p=4;m+p=4k;q-n=8;q+n=2k\end{cases}}\)
Từ đó được các hằng đẳng thức tương ứng
\(\hept{\begin{cases}\left(2k+1\right)^2+\left(k-2\right)^2=\left(2k-1\right)^2+\left(k+2\right)^2\\\left(2k+2\right)^2+\left(k-4\right)^2=\left(2k-2\right)^2+\left(k+4\right)^2\end{cases}}\)
Từ hai đẳng thức này với chú ý f(n)=n với n=1;2;3;4;5;6 ta dễ dàng chứng minh quy nạp được rằng f(n)=n với mọi n thuộc N
Trường hợp f(1)=0 cũng bằng cách lý luận trên ta nêu ra f(n)=0 với mọi n thuộc N
Áp dụng BĐT Cosi cho 2018 số:
\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)
\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)
\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)
Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)
\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)
\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)
\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)
Vậy \(S>6^{2018}\)
Đặt \(f\left(1\right)=d\)
\(f\left(n+1\right)=af^2\left(n\right)+bf\left(n\right)+\dfrac{b^2}{4a}-\dfrac{b}{2a}\)
\(\Leftrightarrow f\left(n+1\right)+\dfrac{b}{2a}=a\left[f\left(n\right)+\dfrac{b}{2a}\right]^2\)
Đặt \(f\left(n\right)+\dfrac{b}{2a}=g\left(n\right)\Rightarrow\left\{{}\begin{matrix}g\left(1\right)=d+\dfrac{b}{2a}\\g\left(n+1\right)=a.g^2\left(n\right)\end{matrix}\right.\)
\(\Rightarrow g\left(n\right)=a.g^2\left(n-1\right)=a\left[a.g^2\left(n-2\right)\right]^2=a^{2^2-1}.g^{2^2}\left(n-2\right)=...=a^{2^{n-1}-1}.\left[g\left(1\right)\right]^{2^{n-1}}\)
\(\Rightarrow g\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}\)
\(\Rightarrow f\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}-\dfrac{b}{2a}\) (1)
Sau đó kiểm tra lại công thức (1) bằng quy nạp là được