K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(x\ge2\)

b: ĐKXĐ: \(x< 5\)

c: ĐKXĐ: \(\left\{{}\begin{matrix}-3< x\le2\\x\ne-1\end{matrix}\right.\)

NV
16 tháng 10 2019

ĐKXĐ: \(x\ge0\)

Khi đó \(2x+1+\sqrt{x}\) hiển nhiên dương nên ko cần tìm điều kiện cho căn to nữa

NV
17 tháng 10 2019

ĐKXĐ:

\(\left\{{}\begin{matrix}x^2-2x-3\ge0\\1-x^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\\-1\le x\le1\end{matrix}\right.\) \(\Rightarrow x=-1\)

17 tháng 10 2019

để H xác định thì:

\(x^2-2x-3\ge0\)\(1-x^2\ge0\)

\(\Rightarrow x^2-2x\ge3\) \(\Rightarrow-x^2\ge-1\)

\(\Rightarrow x\left(x-2\right)\ge3\) \(\Rightarrow x^2\le1\)

\(\Rightarrow x\ge3\) hoặc \(x-2\ge3\) \(\Rightarrow x\le1\)

\(\Rightarrow x\ge5\)

\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

\(A=\frac{x\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(x-\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}\)

b)Khi \(x=\frac{9}{4}\)

\(\Rightarrow\frac{\sqrt{\frac{9}{4}}}{\sqrt{\frac{9}{4}}-1}=3\)

c)\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}< 1\)

\(\Leftrightarrow\sqrt{x}< \sqrt{x}-1\)(Voly)

=>ko có giá trị nào

28 tháng 1 2020

\(a,Đkxđ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x+1}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=x-\sqrt{x}\)

\(b,P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Ta có: \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\forall x\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{4}\)

\(Min_P=-\frac{1}{4}\Leftrightarrow x=\frac{1}{4}\)

c, Đề thiếu không bạn?

1 tháng 2 2020

Không bn nha

1 tháng 9 2021

ĐKXĐ: x2-8x+14≥0 ⇔ \(x^2-\left(4+\sqrt{2}\right)x-\left(4-\sqrt{2}\right)x+14\)≥0

⇔ \(x\left(x-4-\sqrt{2}\right)-\left(4-\sqrt{2}\right)\left(x-4-\sqrt{2}\right)\)≥0

⇔ \(\left(x-4-\sqrt{2}\right)\left(x-4+\sqrt{2}\right)\)≥0

⇔ {x-4-√2≥0             ⇔  x≥4+√2

  [

    {x-4+√2≥0

⇔ {x-4-√2≤0               ⇔  x≤4-√2

  [

    {x-4+√2≤0

⇔ x≥4+√2, x≤4-√2 

Vậy ...

 

Xét :  \(x^2-8x+14\ge0\)

\(\Leftrightarrow x^2-2.x.4+16-2\ge0\)

\(\Leftrightarrow\left(x-4\right)^2-2\ge0\)

\(\Leftrightarrow\left(x-4+\sqrt{2}\right)\left(x-4-\sqrt{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4+\sqrt{2}\ge0\\x-4-\sqrt{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4+\sqrt{2}\le0\\x-4-\sqrt{2}\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4-\sqrt{2}\\x\le4+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\)

Vậy \(x\ge4+\sqrt{2}\) ; \(x\le4-\sqrt{2}\) thì căn thức đc xác định.

 

25 tháng 7 2018

ĐKXĐ: \(x\ge0\)

\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2}{x-\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

5 tháng 9 2021

ĐK: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)

ĐKXĐ: \(x>\dfrac{1}{2}\)