K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Để\(\frac{1+x^2+\frac{1}{x}}{2+\frac{1}{x}}\) được xác định <=> \(2+\frac{1}{x}\ne0\Leftrightarrow\frac{1}{x}\ne-2\Rightarrow x\ne\frac{-1}{2}\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

4 tháng 1 2019

\(x\ne\pm2\)

4 tháng 1 2019

Để phân thức xác định

\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

\(\Rightarrow x\ne\pm2\)

Chúc bạn học tốt!!!

8 tháng 2 2020

a) 

Rút gọn :

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x+1\right)\left(x-1\right)+x+\left(2-x^2\right)\left(x-1\right)}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2x-2-x^3+x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{-x^3+2x^2+3x-3}{x\left(x-1\right)}\right)\)

8 tháng 2 2020

chú phải chia nó ra luôn chứ?

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

15 tháng 5 2017

tích hộ mình

18 tháng 12 2017

lớp mấy thế và sao bạn biết kết bạn với mk

30 tháng 11 2018

x khác 1

\(N=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2+4}{\left(x+1\right)\left(x^2+x+1\right)}\)

\(N=\frac{x^2+2x-x-2-2x^2-2x-2+2x^2+4}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2+x+1}\)

Xét hiệu 1/3-N=\(\frac{1}{3}-\frac{x}{x^2+x+1}=\frac{x^2+x+1-3x}{3\left(x^2+x+1\right)}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}>0\)với mọi x khác 1

=> 1/3 >N

25 tháng 2 2019

a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)\(\frac{1}{x-1}\)\(\frac{x^2-2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)

P=  \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)

b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x  =  2x\(^2\)

\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1   =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)

vậy x= \(\frac{-1}{2}\)

c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé