Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x \(\ne\pm3\)
b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)
Vậy ...
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(a)x\ne\pm\frac{4}{3}\)
\(b)x\ne2\)
\(c)x\ne\pm1\)
\(d)x\ne0;x\ne\frac{1}{2}\)
\(e)x\ne\pm1\)
\(f)x\ne-1;x\ne3\)
\(g)x\ne3;x\ne2\)
a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)
Vậy...
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(a,ĐKXĐ:x\ne-1;x\ne1\)
\(b,P=\left(\frac{x}{x+1}-\frac{x}{x^2+x}\right):\left(\frac{x-1}{x^2-1}\right)\)
\(\Rightarrow P=\left(\frac{x}{x+1}-\frac{x}{x\left(x+1\right)}\right):\frac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow P=\frac{x-1}{x+1}.\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}\)
\(\Rightarrow P=x-1\)
NGƯỜI LẠ LƯỚT WEB
NGƯỜI LẠ LƯỚT WEB
NGƯỜI LẠ LƯỚT WEB
NGƯỜI LẠ LƯỚT WEB
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
\(x\ne\pm2\)
Để phân thức xác định
\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
\(\Rightarrow x\ne\pm2\)
Chúc bạn học tốt!!!