\(\frac{1}{x-2}\)- 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

\(x\ne\pm2\)

4 tháng 1 2019

Để phân thức xác định

\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

\(\Rightarrow x\ne\pm2\)

Chúc bạn học tốt!!!

Help me :<<<<<<<<<<<<<<<<<<<<

a) ĐKXĐ: x \(\ne\pm3\)

b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)

c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)

Vậy ...

2 tháng 4 2020

a, đkxđ:x# 2 ,  x# -2

b, 

     A  =   \(\frac{x+1}{x-2}\)=0

<=>      x + 1 = 0

<=>      x = -1

c,B=\(\frac{x2}{x^2-4}\)

Mà x= \(-\frac{1}{2}\)

<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)

<=>\(\frac{1}{4}:\frac{-15}{4}\)

<=>\(\frac{1}{4}.\frac{4}{-15}\)

<=>\(\frac{-1}{15}\)

d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)

                \(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

23 tháng 11 2018

\(a)x\ne\pm\frac{4}{3}\)

\(b)x\ne2\)

\(c)x\ne\pm1\)

\(d)x\ne0;x\ne\frac{1}{2}\)

\(e)x\ne\pm1\)

\(f)x\ne-1;x\ne3\)

\(g)x\ne3;x\ne2\)

23 tháng 11 2018

Mình Không Biết !

17 tháng 12 2019

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)

Vậy...

17 tháng 12 2019

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)

\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

26 tháng 7 2018

\(a,ĐKXĐ:x\ne-1;x\ne1\)

\(b,P=\left(\frac{x}{x+1}-\frac{x}{x^2+x}\right):\left(\frac{x-1}{x^2-1}\right)\)

\(\Rightarrow P=\left(\frac{x}{x+1}-\frac{x}{x\left(x+1\right)}\right):\frac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow P=\frac{x-1}{x+1}.\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}\)

\(\Rightarrow P=x-1\)

26 tháng 7 2018

NGƯỜI LẠ LƯỚT WEB

NGƯỜI LẠ LƯỚT WEB

NGƯỜI LẠ LƯỚT WEB

NGƯỜI LẠ LƯỚT WEB

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2