\(\dfrac{x-1}{3x^2+6x}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

a: ĐKXĐ: \(3x^2+6x\ne0\)

=>\(x^2+2x\ne0\)

=>\(x\cdot\left(x+2\right)\ne0\)

=>\(x\notin\left\{0;-2\right\}\)

b: ĐKXĐ: \(x^3+64\ne0\)

=>\(x^3\ne-64\)

=>\(x\ne-4\)

c: ĐKXĐ: \(x^2-1\ne0\)

=>\(x^2\ne1\)

=>\(x\notin\left\{1;-1\right\}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

28 tháng 6 2017

Phân thức đại số

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

15 tháng 11 2017

a, Do mẫu thức \(20\ne0\) với mọi x, suy ra phân thức trên xác định với mọi \(x\in R\)

b, Để phân thức \(\dfrac{8}{x+2004}\) xác định \(\Rightarrow x+2004\ne0\Rightarrow x\ne2004\)

c, Để phân thức \(\dfrac{4x}{3x-7}\) xác định\(\Rightarrow3x-7\ne0\Rightarrow x\ne\dfrac{7}{3}\)

d, Để phân thức \(\dfrac{x^2}{x+z}\) xác định\(\Rightarrow x+z\ne0\Rightarrow x\ne z\)

24 tháng 11 2017

\(\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{\left(x^3-3x^2\right)-\left(x-3\right)}{\left(x^2-3x\right)}\)

=\(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}\)

=\(\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

15 tháng 12 2017

a, ĐKXĐ của phân thức là :

\(3x-7\ne0\Leftrightarrow3x\ne7\Leftrightarrow x\ne\dfrac{7}{3}\)

b, ĐKXĐ của phân thức là :

\(x+z\ne0\Leftrightarrow x\ne-z\)

c,ĐKXĐ của phân thức là :

\(x^2-2x\ne0\Leftrightarrow x\left(x-2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)

d,ĐKXĐ của phân thức là :

\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

e,ĐKXĐ của phân thức là :

\(x^2+3\ne0\) ( luôn đúng )