![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(DKXD\hept{\begin{cases}x\left(x^2-1\right)\le0\\x^2-1\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -1\\0\le x< 1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)
ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)
a) Ta thấy theo điều kiện \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)
Ta thấy theo điều kiện \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)
\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)
b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)
Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.
Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ.
Giải:
\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:
\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)
\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:
\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)
a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)
Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)
Với \(x\ge1\)ta có:
\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)
Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)
b, *\(\sqrt{x}+\sqrt{x+1}=1\)
Điều kiện: \(x\ge0\)
Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)
Suy ra: \(x=0\)
*\(\sqrt{x+4}+\sqrt{x-1}=2\)
Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)
Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)
Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)
<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)
\(\Leftrightarrow x\ge\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(-x^2+6x-9\ge0\)
\(\Leftrightarrow\)\(-\left(-x^2+6x-9\right)\le0\)
\(\Leftrightarrow\)\(x^2-6x+9\le0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2\le0\)
Mà \(\left(x-3\right)\ge0\)
Suy ra : \(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Chưa học nên sai thì thôi nhé =.="
Chúc bạn học tốt ~
Để căn thức xác định thì x2 + x + 1 ≥ 0
mà ta có x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x
=> Căn thức xác định với mọi số thực x