Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4x+2\ge0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{matrix}\right.\\x\ge2\end{matrix}\right.\)
\(\Rightarrow x\ge2+\sqrt{2}\)
\(x^2-4x+2\ge0\Leftrightarrow x^2-4x+4\ge2\)
\(\Leftrightarrow\left(x-2\right)^2\ge2\)
\(\Leftrightarrow\left|x-2\right|\ge\sqrt{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2\ge\sqrt{2}\\x-2\le-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{matrix}\right.\)
đkxđ:
\(x^2-4x+3\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
Vậy đkxđ của biểu thức là \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
\(\dfrac{x}{x+2}+\sqrt{x-2}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x+2>0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-2\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x\ge2\)
\(\dfrac{x}{x+2}+\sqrt{x-2}\)
Xác định khi:
\(\left\{{}\begin{matrix}x+2\ne0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ge2\end{matrix}\right.\)
ĐKXĐ: -x^2+2x-1>=0
=>x^2-2x+1<=0
=>(x-1)^2<=0
=>x-1=0
=>x=1
\(\frac{x-2}{x^2-2x+1}\ge0\)
\(\frac{x-2}{\left(x-2\right)^2}\ge0\)
\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x>2\)
hoc lop may roi đại lộc .
Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có
ĐKXĐ là
\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{2x^2}\)
ĐKXĐ: \(2x^2\ge0\left(đúng\forall x\right)\)
Vậy \(x\in R\)