Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3\(⋮\)n - 1
-> ( n - 1 ) + 4 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1 nên 4 \(⋮\)n - 1
-> n - 1 e Ư ( 4 ) = { 1 ; 2 ; 4 }
-> n e { 2 ; 3 ; 5 }
a/ Ta có \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\) Khi đồng thời chia hết cho 2 và 3
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 3 số tự nhiên liên tiếp nên có ít nhất 1 thừa số là chẵn \(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\forall n\)
+ Nếu \(n⋮3\Rightarrow n+3⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 1 \(\Rightarrow n+2⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\forall n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\forall n\)
b/
\(\overline{x375y}⋮45\) khi đồng thời chia hết cho 5 và 9
\(\overline{x375y}⋮9\Rightarrow x+3+7+5+y=15+x+y⋮9\Rightarrow x+y=\left\{3;12\right\}\)
\(\overline{x375y}⋮5\Rightarrow y=\left\{0;5\right\}\)
+ Với \(y=0\Rightarrow x=3\Rightarrow\overline{x375y}=33750\)
+ Với \(y=5\Rightarrow x=7\Rightarrow\overline{x375y}=73755\)
c/
\(\frac{6x+45}{2x+3}=\frac{6x+9+36}{2x+3}=\frac{3\left(2x+3\right)+36}{2x+3}=3+\frac{36}{2x+3}\left(x\ne-\frac{3}{2}\right)\)
\(6x+45⋮2x+3\) khi \(36⋮2x+3\) hay 2x+3 là ước của 36
(tiếp)
\(\Rightarrow2x+3=\left\{-36;-18;-12;-9;-6;-4;-3-2;-1;1;2;4;6;9;12;18;36\right\}\)
Từ đó tìm ra x tương ứng
Bài 1 :
Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)
Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
nên \(\left(2a-2\right).2a.\left(2a+2\right)\)
Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)
Bài 2
a) \(\left(5^n-1\right)⋮4\)
Nếu \(n=1\)thì \(5^n-1=4⋮4\)
Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho \(4\)
Vậy \(\left(5^n-1\right)⋮4\)
b) \(\left(10^n+18n-1\right)⋮27\)
Ta có :\(10^n-1=99.....9\)(n chữ số 9)
\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )
Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)
\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)
Chúc bạn học tốt ( -_- )
a) Ta có: \(7^x+12^y=50\)
\(7^x\) luôn lẻ với mọi x là số tự nhiên , \(50\) là số chẵn mà \(7^x+12^y=50\)
=> \(12^y\) là số lẻ mà 12 là số chẵn
=> \(y=0\)
Với \(y=0\) => \(7^x+1=50\)
=> \(7^x=49=7^2\)
=> \(x=2\)
b) \(\frac{18n+3}{21n+7}\) có thể rút gọn
=> \(21n+7\ne0\)
=> \(21n\ne-7\)
=> \(-3n\ne0\)
=> \(n\ne0\)mà n là số tự nhiên
Vậy để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được khi n là số tự nhiên khác 0
18n + 3 chia hết cho 7
<=> 14n + 4n + 3 chia hết cho 7
Vì 14n chia hết cho 7 => 4n + 3 chia hết cho 7.
Vì 7 chia hết cho 7 => 4n + 3 - 7 chia hết cho 7.
<=> 4n - 4 chia hết cho 7
<=> 4.(n - 1) chia hết cho 7
Ta lại có ƯCLN(4 ; 7) = 1 nên n - 1 chia hết cho 7
=> n - 1 = 7k (k \(\in\) N). Vậy n = 7k + 1