Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đa thức chia có bậc 2
nên đa thức dư là nhị thức bậc nhất
Đặt đa thức dư là \(ax+b\)
Đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=1;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow ax+b=2x+2\)
Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)
là \(2x+2\)
Ta có
Phần dư của phép chia trên là R = (a + 4)x + b
Theo bài ra ta có (a + 4)x + b = 2x – 3 ó a + 4 = 2 b = - 3 ó a = - 2 b = - 3
Vậy giá trị của a và b thỏa mãn điều kiện đề bài là a = -2; b = -3
Đáp án cần chọn là: D
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Bậc của đa thức chia x2 - 1 bằng 2 => Đa thức dư có dạng ax + b. Gọi Q(x) là thương của phép chia
=> x2015 - x10 - x8 = (x2 - 1).Q(x) + (ax + b)
Thay lần lượt x = 1; x = -1 ta được:
-1 = a + b
-3 = -a + b
=> (a+ b) + (-a + b) = 2b = -4 => b = - 2 => a = -1 - (-2) = 1
Vậy đa thức dư là: x - 2