K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{667}{668}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{667}{668}\)

\(1-\frac{1}{x+1}=\frac{667}{668}\)

\(\frac{1}{x+1}=1-\frac{667}{668}\)

\(\frac{1}{x+1}=\frac{1}{668}\)

\(\Rightarrow x+1=668\)

x = 667

3 tháng 7 2018

a) 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/x.(x+1) = 667/668

=>1/1-1/2+1/2-1/3+1/3-1/4+.......+1/x-1/x+1=667/668

=>1/1-1/x+1=667/668

=>1/x+1=1/1-667/668

=>1/x+1=1/668

=>x=667

25 tháng 1

Câu 1: Thực hiện phép tính A = -125 x 2^3 + 71 x 53 + 53 x (-29) - 42 x 53 Bước 1: Tính các giá trị đơn giản 2^3 = 8 -125 x 8 = -1000 71 x 53 = 3763 53 x (-29) = -1537 -42 x 53 = -2226 Bước 2: Thay vào biểu thức ban đầu A = -1000 + 3763 - 1537 - 2226 Bước 3: Tiến hành cộng và trừ A = -1000 + 3763 = 2763 A = 2763 - 1537 = 1226 A = 1226 - 2226 = -1000 Vậy, A = -1000. Câu 2: Tính giá trị biểu thức A = 2019 1 × 2 + 2019 2 × 3 + 2019 3 × 4 + ⋯ + 2019 2018 × 2019 1×2 2019 ​ + 2×3 2019 ​ + 3×4 2019 ​ +⋯+ 2018×2019 2019 ​ Biểu thức này có thể viết lại dưới dạng tổng: 𝐴 = ∑ 𝑘 = 1 2018 2019 𝑘 ( 𝑘 + 1 ) A=∑ k=1 2018 ​ k(k+1) 2019 ​ Để đơn giản hóa mỗi hạng tử, ta phân tích phân số 1 𝑘 ( 𝑘 + 1 ) k(k+1) 1 ​ thành: 1 𝑘 ( 𝑘 + 1 ) = 1 𝑘 − 1 𝑘 + 1 k(k+1) 1 ​ = k 1 ​ − k+1 1 ​ Do đó, ta có thể viết lại biểu thức A như sau: 𝐴 = 2019 × ( 1 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 2018 − 1 2019 ) A=2019×( 1 1 ​ − 2 1 ​ + 2 1 ​ − 3 1 ​ +⋯+ 2018 1 ​ − 2019 1 ​ ) Tất cả các hạng tử sẽ tự rút gọn, và ta chỉ còn lại: 𝐴 = 2019 × ( 1 − 1 2019 ) A=2019×(1− 2019 1 ​ ) Bây giờ tính toán: 𝐴 = 2019 × 2018 2019 = 2018 A=2019× 2019 2018 ​ =2018 Vậy A = 2018.


25 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(1-\frac{1}{x+1}=\frac{99}{100}\)

=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x+1 = 100

=> x = 100 - 1 

=> x = 99

25 tháng 7 2015

mơ đi Nguyễn Đình Dũng

avt255773_60by60.jpg

15 tháng 3 2021

\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)

\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)

\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2019\left(1-\frac{1}{2019}\right)\)

\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)

26 tháng 9 2017

\(C=1.2+2.3+3.4+...+n\left(n+1\right)\\ \Rightarrow3.C=1.2.3+2.3.3+3.4.3+..+n\left(n+1\right).3\\ \Rightarrow3.C=1.2.3+2.3.4-1.2.3+....+n\left(n+1\right)\left(n+2\right)-\left(n-1.n.\left(n+1\right)\right)\\ \Rightarrow3.C=n\left(n+1\right)\left(n+2\right)\\ \Rightarrow C=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Cái D tính TT

13 tháng 7 2016

1/1x2 + 1/2x3 + 1/3x4 + ... + 1/24x25

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/24 - 1/125

= 1 - 1/25

= 24/25

13 tháng 7 2016

1/1x2 + 1/2x3 + 1/ 3x4 +.....+ 1/24x25
= ( 1- 1/2) + (1/2-1/3) + (1/3 - 1/4)+........+ (1/24-1/25)
= 1-1/2+1/2-1/3+1/3-1/4+.........+1/24-1/25
= 1- 1/25 = 24/25

7 tháng 8 2020

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}=\frac{2008}{2009}\)

7 tháng 8 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=\frac{1}{1}-\frac{1}{2009}=\frac{2008}{2009}\)

23 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

23 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(1-\frac{1}{2006}\)

\(\frac{2005}{2006}\)

24 tháng 7 2017

A=1/1x2+1/2x3+...+1/99x100

A=1-1/2+1/2-1/3+1/3-...+1/99-1/00

A=1-1/100

A=99/100