Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
Áp dụng công thức cos =
ta có cos =
=> cos = = = => = 450
Gọi R là bán kính của đường tròn (C)
(C) và C1 tiếp xúc ngoài với nhau, cho ta:
MF1 = R1+ R (1)
(C) và C2 tiếp xúc ngoài với nhau, cho ta:
MF2 = R2 – R (2)
Từ (1) VÀ (2) ta được
MF1 + MF2 = R1+ R2= R không đổi
Điểm M có tổng các khoảng cách MF1 + MF2 đến hai điểm cố định F1 và F2 bằng một độ dài không đổi R1+ R2
Vậy tập hợp điểm M là đường elip, có các tiêu điểm F1 và F2 và có tiêu cự
F1 .F2 = R1+ R2
Bài 2:
1: ĐKXĐ: 4x+1>=0 và 9-x<>0
=>x>=-1/4 và x<>9
2: ĐKXĐ: 4x+7>0 hoặc 7-x>0
=>x>-7/4 hoặc x<7
3: ĐKXĐ: 6x+7/3-x>=0
=>(6x+7)/(x-3)<=0
=>-7/6<=x<3
4: ĐKXĐ: (3-x)(3+x)>0
=>-3<x<3
1.
\(\left|mx-3\right|=mx-3\Leftrightarrow mx-3\ge0\)
\(\Leftrightarrow mx\ge3\)
\(x^2-4=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) \(\Rightarrow B=\left\{-2;2\right\}\)
\(B\backslash A=B\Leftrightarrow A\cap B=\varnothing\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m< 3\\2m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{3}{2}\\m< \frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow-\frac{3}{2}< m< \frac{3}{2}\)
2.
\(A=\left(-\infty;-3\right)\cup\left(\sqrt{6};+\infty\right)\)
À thôi nhìn tập \(C_RB\) thấy kì kì
Đề là \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) hay \(\left(-5;-2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) vậy bạn?
Vì đề như bạn ghi thì \(2>\sqrt{3}\) nên \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)=\left(-5;\sqrt{11}\right)\) luôn còn gì, người ta ghi dạng hợp 2 khoảng làm gì nữa?
Đề là (-5;2) \(\cup\) (\(\sqrt{3}\); \(\sqrt{11}\)) đó bạn!
Vectơ pháp tuyến của đường thẳng d1 là n1=(1;2)
Vectơ pháp tuyến của đường thẳng d2 là n2=(2;-4)
Gọi φ là góc giữa 2 đường thẳng ta có:
cos φ = n 1 . n 2 n 1 . n 2 = - 3 5
Chọn A.