Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge3\)
Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)
\(\Rightarrow2\left(t^2+3\right)-t=m\Leftrightarrow2t^2-t+6=m\)
Xét \(f\left(t\right)=2t^2-t+6\) với \(t\ge0\)
\(-\frac{b}{2a}=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=\frac{47}{8}\Rightarrow f\left(t\right)\ge\frac{47}{8}\)
\(\Rightarrow\) Để pt có nghiệm thì \(m\ge\frac{47}{8}\)
Câu 1:
\(\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)
Câu 2:
Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)
Tất cả các đáp án đều sai
Câu 3:
Để pt có 2 nghiệm pb
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)
\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)