Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A+B+C = ∏∏
nên C=∏∏ -(A+B)
nên ta có sin(A+B)=sinC , cos(A+B)=-cosC
ta có sin2A+sin2B+sin2C
=2sin(A+B)cos(A-B) + 2 sinCcosC
=2sinCcos(A-B)+2sinCcosC
=2sinC ( cos(A-B) + cosC)
=2sinC ( cos(A-B) - cos(A+B))
=2sinC.2sinAsinB
=4sinAsinBsinC
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º
a) sin A = sin (180º – A) = sin (B + C)
b) cos A = – cos (180º – A) = –cos (B + C)
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
Theo định lý hàm sin:
\(\frac{AB}{sinC}=2R\Rightarrow sinC=\frac{AB}{2R}=\frac{6}{R}\)
\(sinA=2sinC\Rightarrow sinA=\frac{12}{R}\)
\(\Rightarrow BC=sinA.2R=\frac{12}{R}.2R=24\)
\(sinB=\frac{4}{3}sinC=\frac{4}{3}.\frac{6}{R}=\frac{8}{R}\)
\(\Rightarrow AC=sinB.2R=16\)
\(\Rightarrow AB+BC+CA=52\)