Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét
2 có tận cùng là 2
2 . 12 có tận cùng bằng 4
2 . 12 . 22 có tận cùng là 8
2 . 12 . 22 . 32 có tận cùng là 6
2 . 12 . 22 . 32 . 42 có tận cùng là 2
..........
Dãy trên có số số hạng là :
( 2012 - 2 ) : 10 + 1 = 202 ( số )
Có 202 : 4 = 50 dư 2
vậy số tận cùng là 4
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Ta có :
Vì 2004 chia hết cho 4 nên 2001.2004 = 4k (k \(\in\) N*)
Số có dạng (...2)4k có tận cùng alf 6
Do đó \(2002^{2001^{2004}}=2002^{2001.2004}=2002^{4k}=\left(...6\right)\)
Chữ số tận cùng là 6