K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

19 tháng 2 2021

chữ số tận cùng là số 0

19 tháng 2 2021

Ta có: 2 + 22 + 23 + ... + 220

= (2 + 22 + 23 + 24) + (25 + 2+ 27 + 28) + ... + (217 + 218 + 219 + 220)

= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)

= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)

= 30(2 + 22 + 23 + 24)

Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0

hay 2 + 22 + 23 + ... + 220 có tận cùng là 0

Chúc bn học tốt!

9 tháng 2 2021

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

Các số chia hết cho 5 là: 10; 15; 25; 95

Nhận xét: Các số trên có chữ số tận cùng là: 0; 5

27 tháng 12 2016

Vì 12 -2 = 10 ; 22 -12 = 10 ; ... ; 1662 - 1652 = 10 nên khoảng cách giữa 2 số hạng trong tổng là 10 .

Số số hạng của tổng là :

( 1662 - 2 ) : 10 + 1 = 167 ( số hạng )

2 . 167 = 334

Vậy , chữ số tận cùng của tổng là 4 .

Trong bài làm này , mình viết có vài chỗ  khó hiểu , bạn tự suy nghĩ nha !

Bạn nào thấy đúng nhớ k cho mình nha !

5 tháng 6 2017

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

31 tháng 8 2021

\(51^{51}=\overline{.....1}\)

\(99^{99}=\left(99^2\right)^{49}\cdot9=\overline{....1}^{49}\cdot9=\overline{....1}\cdot9=\overline{....9}\)

\(22^{22}=\left(22^4\right)^5\cdot2^2=\overline{...6}^5\cdot4=\overline{...6}\cdot4=\overline{....4}\)

\(222^{101}=\left(222^4\right)^2^5\cdot222=\overline{...6}^{25}\cdot222=\overline{....6}\cdot222=\overline{....2}\)