
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này

Ta có 1.2.3.4.5.6.7.8.9.10.11.12
Ta thấy số 10 có số 0 tận cùng mà chữ số 0 tận cùng nhân với các số còn lại thì cũng băng 0
=> 1.2.3.4.5.6.7.8.9.10.11.12 có chữ số tận cùng là 0

\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)

\(S=1+3^1+3^2+...+3^{30}\)
\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)
\(S=1+3.10+3^2.10+...+3^{28}.10\)
Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0
\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1
=> Chữ số tận cùng của S là 1.

a, \(7^{2005}=7.7^{2004}=7.\left(7^4\right)^{501}=7.2401^{501}\)
Các số tự nhiên có tận cùng bằng 1 nâng lên lũy thừa bất kỳ (khác 0) vẫn giữ nguyên chữ số tận cùng là nó.
\(\Rightarrow2401^{501}=\overline{\left(....1\right)}\)\(\Rightarrow7^{2005}=7.\overline{\left(.....1\right)}=\overline{\left(....7\right)}\)
Vậy chữ số tận cùng của 72005 là 7
b, \(12^{1789}=12.12^{1788}=12.\left(12^4\right)^{447}=12.\left(20736^{447}\right)\)
Các số tự nhiên có tận cùng bằng 6 nâng lên lũy thừa bất kỳ (khác 0) vẫn giữ nguyên chữ số tận cùng là nó.
\(\Rightarrow20736^{447}=\overline{\left(....6\right)}\)\(\Rightarrow12^{1789}=12.\overline{\left(...6\right)}=\overline{\left(....2\right)}\)
Vậy chữ số tận cùng của 121789 là 2

Ta có : 312=(34)3=\(\overline{...1}\)
Vậy chữ số tận cùng của 312 là 1.
Ta có : 712=(74)3=\(\overline{...1}\)
Vậy chữ số tận cùng của 712 là 1.
Ta có : 230=22.(26)7=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)
Vậy chữ số tận cùng của 230 là 4.
Cho tớ sửa lại phần cuối nhé! Tớ làm sai :
Ta có : 230=22.(24)7=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)
Vậy chữ số tận cùng của 230 là 4