Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$184\equiv 4\pmod {10}$
$\Rightarrow 184^{2019}\equiv 4^{2019}\pmod {10}$
Ta thấy:
$4^4\equiv 1\pmod 5$
$\Rightarrow 4^{2019}=(4^4)^{504}.4^3\equiv 1^{504}.4^3\equiv 4\pmod {5}$
Vậy $4^{2019}=5k+4$ với $k$ tự nhiên.
Vì $5k+4=4^{2019}\vdots 4\Rightarrow k$ chẵn. Đặt $k=2m$ với $m$ tự nhiên
$4^{2019}=5.2m+4=10m+4$
Suy ra $4^{2019}$ tận cùng là $4$
184\(^{2019}\)
= 184\(^{2018}\).184
=(184\(^2\))\(^{1009}\).184
=33856\(^{1009}\).184
= (...6).(...4)=(...4)
Vậy chữ số tận cùng của 184\(^{2019}\) là 4
Bạn tham khảo nha, nếu có gì không hiểu hoặc sai sót thì bạn và mình cùng trao đổi.
---Học Tốt Nha---
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1