Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
22014 + 32015 + 52016
= 22012.22 + 32012.33 + (...5)
= (24)503.4 + (34)503.27 + (...5)
= (...6)503.4 + (...1)503.27 + (...5)
= (...6).4 + (...1).27 + (...5)
= (...4) + (...7) + (...5)
= (...1) + (...5)
= (...6)
T=\(5^1+5^2+...+5^{2017}\)
=> 5T=\(5^2+5^3+...+5^{2018}\)
=> 5T- T=\(5^{2018}-5\)
=>4T=\(\overline{...5}-5=\overline{...0}\)(Vì 5 lũy thừa bao nhiu cũng có tận cùng là chinh nó)
=> T=\(\overline{...0}\)
Vậy cstc của T là 0
Các bn giải dùm mk nha !!!
Thanks everyone
Ai giải đc thì kb nha
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
\(B=5^{2016}+2^{2017}\)
\(B=\left(...5\right)+\left(...4\right)^{1008}.2\)
\(B=\left(...5\right)+\left(...6\right)^{504}.2\)
\(B=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy B có chữ số tận cùng là 7
\(C=7^{2015}+5\cdot2^{100}\)
\(C=\left(...9\right)^{1007}\cdot7+5\cdot\left(...4\right)^{50}\)
\(C=\left(...1\right)^{503}\cdot9\cdot7+5\cdot\left(...6\right)^{25}\)
\(C=\left(...3\right)+\left(...0\right)=\left(...3\right)\)
Vậy C có chữ số tận cùng là 3
\(D=405^n+2^{405}\)
\(D=\left(...5\right)+\left(...4\right)^{202}\cdot2\)
\(D=\left(...5\right)+\left(...6\right)^{101}\cdot2\)
\(D=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy D có chữ số tận cùng là 7