Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
Ta có:
22014 + 32015 + 52016
= 22012.22 + 32012.33 + (...5)
= (24)503.4 + (34)503.27 + (...5)
= (...6)503.4 + (...1)503.27 + (...5)
= (...6).4 + (...1).27 + (...5)
= (...4) + (...7) + (...5)
= (...1) + (...5)
= (...6)
4^3^10=4^30=(4^2)^15=..........6^15=...........6
2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4
2^3^4=2^12=(2^4)^3=.............6^3=...............6
3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3
9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9
T=\(5^1+5^2+...+5^{2017}\)
=> 5T=\(5^2+5^3+...+5^{2018}\)
=> 5T- T=\(5^{2018}-5\)
=>4T=\(\overline{...5}-5=\overline{...0}\)(Vì 5 lũy thừa bao nhiu cũng có tận cùng là chinh nó)
=> T=\(\overline{...0}\)
Vậy cstc của T là 0
Các bn giải dùm mk nha !!!
Thanks everyone
Ai giải đc thì kb nha
vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed