Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phải tìm có dạng \(\overline{x4y}\), \(x+y=17-4=13\).
\(\overline{x4y}-\overline{y4x}=99\Leftrightarrow99x-99y=99\Leftrightarrow x-y=1\)
Ta có hệ:
\(\hept{\begin{cases}x+y=13\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\).
Vậy số cần tìm là \(746\).
Gọi số đó là \(\overline{abc}\)
ta có \(\hept{\begin{cases}a+c=16\\\overline{abc}-\overline{cba}=198\\a+b+c⋮9\end{cases}\Leftrightarrow\hept{\begin{cases}a+c=16\\99\left(a-c\right)=198\\b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=9\\c=7\\b=2\end{cases}}}\)
vậy số cần tìm là 927
đặt số đó là aabb
ta có aabb = 1100.a +11.b = 11.a0b .Do aabb phân tích thành 1 tích của 3 thừa số có 2 chữ số và chia hết cho 11, nên a0b là tích của 2 số có 2 chũ số chia hết cho 11.
=> a0b = 11x.11y = 121.xy
=> 2. xy chia hết cho 10
suy ra xy = 5
=> a0b = 605
vậy aabb = 6655
Gọi số cần tìm là abc
Nhận thấy rằng \(2\le a+b+c\le27\)(do \(1\le a\le9\) và \(0\le b\le9\) và \(1\le c\le9\))
\(\Rightarrow2\le16+b\le27\)
\(\Rightarrow b=2\)
Ta có: \(a2c-c2a=198\)
\(\Rightarrow100a+20+c-\left(100c+20+a\right)=198\)
\(\Rightarrow99a-99c=198\)
\(\Rightarrow99\left(a-c\right)=198\) \(\Rightarrow a-c=2\)
Mà theo đề bài ta có: \(a+c=16\)
Từ đó ta suy ra: \(a=9\) và \(c=7\)
Vậy số cần tìm là 927