![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3+xy-3x-y=5\)
\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)
Với \(x=1\)không thỏa mãn.
Với \(x\ne1\):
\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)
Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)
Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+xy=x+y+3\)
\(\Leftrightarrow x^2+xy-x-y=3\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(x+y\right)=3\)
\(\Leftrightarrow x\left(x+y\right)-\left(x+y\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(x+y\right)=3\)
Vì x, y là các số nguyên nên \(x-1,x+y\)là các số nguyên.
Do đó \(\left(x-1\right)\left(x+y\right)=3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Ta có bảng sau:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
x+y | -1 | -3 | 3 | 1 |
y | 1 | -3 | 1 | -3 |
Vậy phương trình có tập nghiệm: \(\left(x;y\right)=\left(-2;1\right);\left(0;-3\right);\left(2;1\right);\left(4;-3\right)\)
\(x-xy+y=2x-y\)
\(\Rightarrow-x-xy+2y=0\)
\(\Rightarrow-x\left(1+y\right)=-2y\)
\(\Rightarrow x=\dfrac{2y}{y+1}=\dfrac{2\left(y+1\right)-2}{y+1}=2-\dfrac{2}{y+1}\left(y\ne-1;x\ne2\right)\)
-Ta có: x,y là số nguyên.
\(\Rightarrow2⋮\left(y+1\right)\)
\(\Rightarrow y+1\inƯ\left(2\right)\)
\(y=0\Rightarrow x=2-\dfrac{2}{0+1}=0\left(n\right)\)
\(y=-2\Rightarrow x=2-\dfrac{2}{-2+1}=4\left(n\right)\)
\(y=1\Rightarrow x=2-\dfrac{2}{1+1}=1\left(n\right)\)
\(y=-3\Rightarrow x=2-\dfrac{2}{-3+1}=3\left(n\right)\)
-Vậy các cặp số (x,y) là (0,0); (4,-2); (1,1) ;(3;-3)