![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lập bảng xét dấu là ra thôi bài này dễ mà
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)
Dấu "=" xảy ra khi:\(\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:
\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)
\(\ge\left|x+3+1-x\right|=4\left(1\right)\)
Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)
\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)
\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)
Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)
Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
|3x-4|=|x+2|
\(\Leftrightarrow\int^{3x-4=x+2}_{3x-4=-x-2}\Leftrightarrow\int^{3x-x=4+2}_{3x+x=4-2}\Leftrightarrow\int^{2x=6=>x=3}_{4x=2=>x=2}\)
vậy x E {2'3}
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 2005=|x-4|+|x-10|+|x+101|+|x+990|+|x+1000|
2005=|4-x|+|10-x|+|x+101|+|x+990|+|x+1000|
Mặt khác ta có |4-x|+|10-x|+|x+990|+|x+1000| lớn hơn hoặc bằng |4-x+10-x+x+990+x+1000|=2004
Ta lại có |4-x|+|10-x|+|x+101|+|x+990|+|x+1000|=2005
nếu |4-x|+|10-x|+|x+990|+|x+1000|=2005
=>|x+101|=0
=>x=-101
Nếu |4-x|+|10-x|+|x+990|+|x+1000|=2004
=>|x+101|=1
=>x=-100
Thử lại ta thấy x=-100 là thõa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)