Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
hay \(\frac{2x}{4}-\frac{3}{y}=\frac{5}{4}\)
Suy ra \(\frac{3}{y}=\frac{2x-5}{4}\)
\(\Rightarrow3\cdot4=\left(2x-5\right)y\)
hay \(\left(2x-5\right)y=12\)
Đến đây bạn tự lập bảng giá trị nhé!
\(x+y+x.y=3\)
=>\(x+y+x.y+1=4\)
=>\(\left(x+x.y\right)+\left(y+1\right)=4\)
=>\(x\left(1+y\right)+\left(y+1\right)=4\)
=>\(\left(x+1\right)\left(y+1\right)=4\)
Ta có bảng sau:
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
y+1 | -1 | -2 | -4 | 4 | 2 | 1 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
y | -2 | -3 | -5 | 3 | 1 | 0 |
Vậy có 6 cặp số nguyên thỏa mãn là ...
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
\(\frac{17^2}{x}=\frac{7x^2}{-119}\)
=\(17^2.\left(-119\right)=7x^2.x\)
=\(-34391=7x^3\)
=\(-4913=x^3\)
x=\(\sqrt[3]{-4913}=-17\)
\(x+y+x\times y=3\)
\(x+y+x\times y+1=4\)
\(\left(x+x\times y\right)+\left(y+1\right)=4\)
\(x\left(1+y\right)+\left(y+1\right)=4\)
\(\left(x+1\right)\left(y+1\right)=4\)
Ta có :
|
| |||||||||||||||||||||||||||||||||
_ Vậy có 6 cặp số nguyên thỏa mãn là... ( bn tự ghi nha ) | ||||||||||||||||||||||||||||||||||
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
x+xy = 3-y
x(1+y) =3 - y => x =\(\frac{3-y}{1+y}\)
nếu y = 1 thi x = 1
y = 2 thì x = 1/3 (loại)
y = 3 => x = 0
y = -2 => x = -5
y = -3 => x = -3
Ta có : x + y + xy + 1 = 4
=> x.(y+1) + (y+1) = 4
=> (x+1).(y+1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
x + 1 = 4 và y + 1 = 1 => x = 3, y = 0
x + 1 = -4 và y + 1 = -1 => x = -5, y = -2
x + 1 = 1 và y +1 = 4 => x = 0, y = 3
x + 1 = -1, y + 1 = -4 => x = -2, y = -5
x + 1 = 2, y + 1 = 2 => x = 1, y = 1
x + 1 = -2, y + 1 = -2 => x = -3, y = -3
Vậy (x,y) = .......( tự điền nốt nha) =) =)