Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài 3:
Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4
Đặt x/2=y/3=z/4=k
=>x=2k; y=3k; z=4k
\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)
a) Ta có: \(A=\left(-2\dfrac{1}{5}xy^2\right)^2.\left(-xy^2\right)\left(\dfrac{1}{3}x^5y^7\right)^0\)
\(=\left(\dfrac{-11}{5}xy^2\right)^2.\left(-xy^2\right)\)
\(=\dfrac{-121}{25}x^2y^4.x.y^2\)
\(=\dfrac{-121}{25}x^3y^6\)
\(\Rightarrow\) Bậc của A là: \(9.\)
b) Ta có: \(\dfrac{-121}{25}x^3y^6\le0\)
\(\Rightarrow x^3y^6\le0\)
\(\Rightarrow x^3\le0\)
Vậy \(x^3\le0.\)
a) A=(\(\dfrac{-11}{5}\)x2y4).(-xy2).1
A=(\(\dfrac{-11}{5}\).-1).(x2.x).(y4.y2)
A=\(\dfrac{11}{5}\)x3y6
Bậc của đơn thức này là 9
b) Ta thấy : y6\(\ge\)0
\(\Rightarrow\)\(\dfrac{11}{5}\)y6\(\ge\)0
\(\Rightarrow\) để đơn thức A có giá trị nhỏ hơn hoặc bằng 0 thì x3 phải có giá trị nhỏ hơn hoặc bằng 0
\(\Rightarrow\)x\(\le\)0 thì đơn thức A có giá trị nhỏ hơn hoặc bằng 0
Ko ghi đề nha!
*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)
\(=-a^5b^2\) Bậc là 5+2=7
+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)
\(=4x^3y^2z^4\) Bậc là 3+2+4=9
* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)
\(=-3x^3y^3z^4\) Bậc là 3+3+4=10
b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)
\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11
Chào người bạn cũ
1.
a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)
b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)
Vì \(x^2\ge0\forall x\in R\).
Vậy biểu thức trên luôn luôn có nghĩa.
c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).
a) \(14x-56=0\)
\(\Rightarrow14x=56\)
\(\Rightarrow x=\dfrac{56}{14}\)
\(\Rightarrow x=4\)
b) \(\dfrac{1}{2}-\dfrac{3}{4}x=0\)
\(\Rightarrow\dfrac{3}{4}x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(16-x^2=0\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow x=\pm4\)
a) 14�−56=014x−56=0
⇒14�=56⇒14x=56
⇒�=5614⇒x=1456
⇒�=4⇒x=4
b) 12−34�=021−43x=0
⇒34�=12⇒43x=21
⇒�=12:34⇒x=21:43
⇒�=32⇒x=23
c) 16−�2=016−x2=0
⇒�2=16⇒x2=16
⇒�2=42⇒x2=42
⇒�=±4⇒x=±4