Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{9}=\frac{y}{6}\)(1)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{6}=\frac{z}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{6}=\frac{z}{8}=\frac{x+y+z}{9+6+8}=\frac{46}{23}=2\)
=>x=2.9=18
y=2.6=12
z=2.8=16
Vậy...
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
theo tính chất dãy tỉ số bằng nhau có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{24}{10}=\frac{12}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{12}{5}\Rightarrow x=2.12:5=\frac{24}{5}\)
\(\Rightarrow\frac{y}{3}=\frac{12}{5}\Rightarrow y=3.12:5=\frac{36}{5}\)
\(\Rightarrow\frac{z}{5}=\frac{12}{5}\Rightarrow z=5.12:5=12\)
Ta có : x/2=y/3=z/5 và điều kiện :x+y+z=24
Áp dụng tính chất dãy tỉ số bằng nhau :
x/2=y/3=z/5 =x+y+z/2+3+5 =24/10=12/5
Suy ra : 12/5.2=24/5
12/5.3=36/5
12/5.5=12
Vậy (x;y;z)= (24/5;36/5;12)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Ta có: \(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{6}\)và \(2x-y+z=46\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\)và \(2x-y+z=46\)
\(\Rightarrow\frac{2x}{20}=\frac{y}{15}=\frac{z}{18}\)và\(2x-y+z=46\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{y}{15}=\frac{z}{18}=\frac{2x-y+z}{20-15+18}=\frac{46}{23}=2\)
Ta có: \(\frac{x}{10}=\frac{2x}{20}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{18}=2\Rightarrow z=2.18=36\)
Vậy:\(x=20;y=30\)và\(z=36\)
Ta có : \(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=x+y+z\)(1)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{y+z-2+x+z-3+x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)(2)
Nếu \(x+y+z=0\)thì từ (1) => x = 0,y = 0,z = 0
Nếu \(x+y+z\ne0\),thì từ (2) suy ra : \(\frac{1}{2}=x+y+z\),khi đó (1) trở thành:
\(\frac{x}{\frac{1}{2}-x-2}=\frac{y}{\frac{1}{2}-y-3}=\frac{z}{\frac{1}{2}-z+5}=\frac{1}{2}\)
Từ đó suy ra \(x=-\frac{1}{2}\),\(y=-\frac{5}{6}\),z = \(\frac{11}{6}\)
Chỗ khi đó (1 ) sai nha bạn phải là ( 2 )
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
Theo đề ta có :
`x/3 = y/2; y/5 =z/3; x + y + z =46`
`x/3 = y/2 => x/15 = y/10`
`y/5 = z/3 = y/10 = z/6`
`=> x/15 = y/10 = z/6`
Áp dụng tính chất dãy tính chất bằng nhau ta có :
`x/15 = y/10 = z/6 = (x+y+z)/(15+10+6) = 46/31`
`=>` \(\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{46}{31}\times15=\dfrac{690}{31}\\\dfrac{y}{10}=\dfrac{46}{31}\times10=\dfrac{460}{31}\\\dfrac{z}{6}=\dfrac{46}{31}\times6=\dfrac{276}{31}\end{matrix}\right.\)
Vậy `x = 690/31; y= 460/31; z = 276/31`
x/3 = y/2 , y/5 = z/3
ta có: x/3 = x.5/ 3.5 = x/15 ; y/2= y.5/2.5 = y/10 ; y/5 = y.2/5.2 = y/10 ; z/3 = z.5/3.5= z/15
=> x/15= y/10 ; y/10= z/15
=> x/15=y/10=z/15 , x+y+z = 46
=> x+y+z/ 15+10+15 = 46/40 = 1,15
=> y = 1,15 x 15 = 17,25
=> x = 1,15 x 10 = 11,5
=> z = 1,15 x 15 = 17,15