Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu y=0⇒x2−5x+6=0⇒x∈2;3
-Nếu y=1⇒x2−5x+4=0⇒x∈1;4
-Nếu y>1
3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)
Thay vào đầu bài ta có 9k2−9k+3=3y⇒3k2−3k+1=3y−1
Nhận thấy 3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)
Vậy pt có 4 nghiệm nguyên
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)
\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)
\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)
TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.
TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:
\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
ta thấy VT chia hết cho 6 => VP chia hết cho 6 => \(5^z\equiv-1\left(mod6\right)\)
=> (-1)z \(\equiv\)-1 (mod 6) => z lẻ
xét x=y=z=1 (thỏa mãn)
xét z>1 => z,y>1, ta có pt <=> 2x.3y=(5+1)(5z-1-5z-2+....-1)
<=> 2x-1.3y-1\(\equiv\)-1 (mod 2) vô lý vì VT chẵn)
vậy pt có nghiệm nguyên dương là x=y=z=1