\(9x^2-6x+6=3^{2y+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

Vì x=0 không thỏa mãn nên x>0 khi đó \(3^x+7\)chẵn nên y2 chẵn hay y2 chia hết cho 4 suy ra \(3^x+7\)chia hết cho 4

Vậy thì \(3^x\equiv1\left(mod4\right)\Leftrightarrow x=2k,k\in N,k\ne0\)

Khi đó ta đi giải \(3^{2k}+7=y^2\Leftrightarrow\left(y-3^k\right)\left(y+3^k\right)=7=1.7=-1.\left(-7\right)\)

\(\Rightarrow\orbr{\begin{cases}y-3^k=1,y+3^k=7\\y-3^k=-1,y+3^k=-7\left(L\right)\end{cases}\Leftrightarrow k=1,y=4}\Rightarrow x=2,y=4\)

Vậy (x;y)=(2;4)

25 tháng 7 2016

X = 3

 Y = 3

25 tháng 7 2016

xét vs x=0,1,2 ko tm
vs x=3 =>y=3
ta di c/m đây là no duy nhất.
thật vậy vs x>3

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

10 tháng 8 2019

ta có  \(7x^2-13xy-2y^2=0\)

  \(7x^2-14xy+xy-2y^2=0\)

7x(x-2y)+y(x-2y)=0

(7x+y)(x-2y)=0

=>. 7x+y=0   hoặc   x-2y=0

=>   y=-7x     hoặc x=2y

Thay lần lượt vào A là OK nha bn !

17 tháng 12 2015

Bài số nguyên tố rất hay.