Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
2165 + 4 . 613 = 615 + 4 . 613 = 613 (62 + 4) = 613 . 40
... (tự làm)
bài 2: p = 13 (ko biết cách trình bày)
bài 3: nếu ko có điều kiện của số đó thì số đó là 0 hoặc 1 hoặc 0,25 (tức là \(\frac{1}{4}\))
Bài 2 bạn k biết cách trình bày thì thôi nhưng bạn trình bày bài 3 cho mình đi còn bài 1 mình biết rồi. Mai mình kiểm tra 15 phút mấy bài đấy huhu cô giáo mình giai bài khó quá
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)
Đặt 7p + 1 = n^3 (n > 2)
=> 7p = (n - 1)(n^2 + n + 1)
Ta có 2 TH :
TH1 : n - 1 = 7 \(\forall\)n^2 + n +1 = p => n = 8 => p = 73
TH2 : n - 1 = p \(\forall\) n^2 + n + 1 =7 => ....
Lời giải:
Đặt với là số tự nhiên.
Đến đây có các TH:
TH1:
(tm)
TH2:
hoặc
hoặc (không thỏa mãn)
TH3: (dễ loại)
TH4: (cũng dễ loại)
Xét p=2,p=2, ta có: 4p+1=94p+1=9 là số chính phương.
Xét p>2,p>2, vì pp là số nguyên tố nên p=2k+1p=2k+1 (k∈N∗)(k∈N∗)
Ta có: 4p+1=4(2k+1)+1=8k+54p+1=4(2k+1)+1=8k+5
Mặt khác 4p+14p+1 là một số chính phương lẻ nên chia 88 dư 1.1.
Do đó với p>2p>2 thì 4p+14p+1 không là số chính phương.
Vậy số nguyên tố pp để 4p+14p+1 là số chính phương là 2.2.
Xét p=2 , ta có : 4p + 1 = 9 là số chính phương
Xét p > 2 , vì p là số nguyên tố nên p = 2k + 1 (k thuộc N*)
Ta có : 4p + 1 = 4(2k + 1) +1 = 8k + 5
Mặt khác 4p + 1 là một số chính phương lẻ nên chia 8 dư 1
Do đó với p > 2 thì 4p + 1 ko là số chính phương
Vậy số nguyên tố p để 4p + 1 là số chính phương là 2
mọi người giúp mình với
đăng lên là mn biết cậu cần giúp rồi!