Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì n chia hết cho n nên để n+4 chia hết cho n thì n thuộc Ư(4).Mà Ư(4)=1;2;4.Vậy n=1;2;4
a,\(\frac{n+7}{n}=\frac{n}{n}+\frac{7}{n}=1+\frac{7}{n}\)
Để phân số thuộc Z thì 7 phải chia hết cho n
\(\Rightarrow n\inƯ\left(7\right)\)
N | 1 | 7 | -1 | -7 |
\(\frac{n+7}{n}\) | 8 | 2 | -6 | 0 |
Vậy n={1,7,-1,-7} thi phân số thuộc Z
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
các phấn số trên là số nguyên thì tử phải chia hết cho mẫu
suy ra mẫu là ước của tử
các câu đều chung 1 dạng như vậy đó
tự làm tiếp nha tui đi ngủ đây
a) n+4/n
=n/n+4/n
=1+4/n
Để 1+4/n là số nguyên
=> 4/n là số nguyên và n là số tự nhiên
=> n là Ư(4) =1;2;4
b,c áp dụng tương tự câu a
d) thì khó hơn xíu mik giải hộ:
n/n-2 là số nguyên
=> D=n/n-2
=> 2D=2n/n-2
=> 2D=2n-4+4/n-2
=> 4/n-2 là số nguyên do 2n-4=2(n-2) chia hết cho n-2
=> n-2 là Ư(4)
Xong tự giải típ .