K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:

Đặt $n^4+4n^2-1=a^2$ với $a$ là số tự nhiên 

$\Leftrightarrow (n^2+2)^2-5=a^2$

$\Leftrightarrow 5=(n^2+2)^2-a^2=(n^2+2-a)(n^2+2+a)$

Do $n^2+2+a\geq n^2+2-a$ với $a\geq 0$ và $n^2+2+a>0$ nên:

$n^2+2+a=5$ và $n^2+2-a=1$

$\Rightarrow 2(n^2+2)=6\Rightarrow n^2+2=3$

$\Leftrightarrow n^2=1$

$\Rightarrow n=\pm 1$

22 tháng 1 2022

- Chắc là gọi thầy Nguyễn Việt Lâm thôi :)

NV
22 tháng 1 2022

1.

\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)

\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ

\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)

\(\Rightarrow n=4b\left(b+1\right)\)

Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn

\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)

Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1

Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2

\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\)

\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau

20 tháng 2 2018

tự túc là hạnh phúc

NM
3 tháng 9 2021

xét mọi số chính phương đều có thể viết dưới dạng :

\(\left(a\cdot n+b\right)^2\) với mọi số  \(a,b\) là các số tự nhiên và b nhở hơn n

mà ta có :

\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)

vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2

vậy n=2

3 tháng 9 2021

tự làm , ok

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

27 tháng 9

Rffsdffdsff